
Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 1

The CBSR communication module on-board the satellite is designed to minimize the volume and

power consumption, while maximizing its performance at the same time. Both the transmitter (on-

board the satellite) and the receiver (in the ground station) are implemented using Software Defined

Radio technique. However, in this document only the electrical and mechanical design of the satellite

communication module is discussed.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 2

Contents

List of acronyms... 4

1. Module Characteristics .. 5

1.1. General Parameters... 5

1.2. Implementation and Block Diagram .. 5

2. Module Electrical Design ... 7

2.1. Base-band Signal Processing and System Management Sections (a.k.a Digital Section) 7

2.2. RF Section (a.k.a Analog Section) .. 8

2.3. Power Supply Section .. 10

2.4. Interface Section ... 10

2.5. Auxilary Section ... 10

2.6. Schematics ... 10

3. Module Mechanical Design ... 11

4. Transmitter implementation – PL part (FPGA) .. 12

4.1. Radio frame structure ... 12

4.2. Simulink model .. 12

4.3. Data loading and fake frame generation... 15

4.3.1. Data scrambling, CRC insertion and channel coding ... 18

4.3.2. OQPSK modulation .. 20

4.3.3. Radio frame creation ... 21

4.3.4. Pulse shaping and transmitter output ... 24

4.4. Custom-made IP core .. 25

4.5. Introduction ... 25

4.5.1. Reference design customization ... 25

4.5.2. The use of Simulink HDL Workflow Advisor .. 28

4.5.3. Vivado project details .. 30

5. Transmitter Implementation – PS part (software) .. 33

5.1. TX vs RX – disambiguation ... 33

5.2. Operating System .. 33

5.2.1. Cross-compiling Tools .. 33

5.2.2. Shell ... 33

5.2.3. Kernel Configuration ... 33

5.2.4. FPGA Driver and Kernel Modules .. 34

5.2.4.1. Driver Attributes Description .. 34

5.2.4.2. Kernel Modules Loading .. 34

5.2.4.2.1. Modules configuration file .. 36

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 3

5.2.5. Libraries and Tools ... 36

5.2.6. Device Tree and Node Configuration .. 37

5.2.7. RF Configuration .. 38

5.2.8. Application Configuration Files ... 38

5.2.9. Pre-O/S Components and Boot Sequence / Order .. 39

5.2.9.1. FSBL ... 39

5.2.9.1.1. FSBL Boot Logs ... 39

5.2.9.2. SSBL / U-boot ... 39

5.2.9.3. Linux Kernel ... 40

5.3. Custom Made Applications ... 42

5.3.1. Application: ad9361-config.run [TX + RX] ... 42

5.3.2. Application: config-dispatcher.run [TX only] .. 44

5.3.3. Application session-scheduler.run [TX only] ... 45

Bibliography ... 46

Appendix A .. 47

Appendix B .. 47

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 4

List of acronyms

BB Base-band

CBSR C-band Satellite Radio

DAC Digital to Analog Converter

DMA Direct Memory Access

FSM Finite State Machine

NCBR Narodowe Centrum Badań I Rozwoju

PA Power Amplifier

PN Pseudorandom Noise

PUT Poznań University of Technology

SDR Software Defined Radio

SR SatRevolution S.A.

SoM System-on-Module

SoC System-on-Chip

t.b.d to be determined

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 5

1. Module Characteristics

1.1. General Parameters

The CBSR transmitter module has been designed to fit on-board the Cubesat nanosatellite developed

by SatRevolution S.A. The mechanical construction and the electrical parameters of the module have

been agreed by SR and PUT within a joint R&D project financed by NCBR.

Based on the system specification presented in [1], the electrical parameters of the module are the

following:

 carrier frequency – user selectable between 5500 MHz and 6000 MHz, default 5840 MHz

 carrier frequency step – 2.4 Hz

 frequency stability – < 1ppm, -40°C ÷ +85°C

 channel bandwidth – user selectable: 1 MHz, 1.25 MHz, 5 MHz, 10 MHz, 20 MHz

 transmit power – 2W (+33dBm) max. @50 Ω, user selectable in 0.25dB steps

 modulation type - digital (quadrature) - OQPSK

 channel coding – Turbo, user selectable code rate: 0.19 – 0.91

 power supply – 12 V, 2.5 A max.

 power consumption:

o off mode – t.b.d. (100uA?) (BB-OFF, PA-OFF)

o sleep mode – t.b.d. (BB-ON – sleep mode, PA-OFF)

o idle mode – t.b.d. (1A?) (BB-ON, PA-OFF)

o transmit mode – t.b.d. (2.2A?) (BB-ON, PA-ON)

 off mode to idle mode time – approx. 5 s

 data/control interface – RS-232, Ethernet

1.2. Implementation and Block Diagram

The transmitter has been implemented using SDR technique. Most of the its functionality (physical

layer) is implemented in FPGA, only the control block and layers above the physical layer are

implemented in software. The transmitter module runs its own lightweight, Linux based, operating

system.

The transmitter functionality can be modified by software upgrades only – no hardware

modifications are required. This can be done even in space (during the mission) providing that the

uplink can be used for uploading the bitstream to the satellite.

The block diagram of the transmitter module is presented in Fig. 1.1. Base-band signal processing and

system management sections (see 2.1), low-power analog (RF) section (see 2.2) as well as power

supply section (see 2.3) are located on the main PCB (PCB1). The RF power amplifier (see 2.3) is

located on a separate PCB (PCB2), however the two PCBs form a single module covered with an

aluminum radiator. For debugging and testing purposes the module can be connected in the lab to

PCB3 hosting the auxiliary section (see 2.4), using zero insertion force ribbon connectors.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 6

``

DC Conditioning

SPI (J1) USB (J3) ETH (J5) JTAG (U5)

SD card
socketUART

to
USB

B2B
(CN1)

B2B
(CN3)

B2B connector (CN2)

B2B
(CN3)

B2B
(CN1)B2B connector (CN2) RF Out

RF Out

RF Power
Amplifier

(HMC7357)

RF In

40
 p

in
 s

ys
te

m
 c

o
nn

ec
to

r
(H

1
-H

2
)

Debugging only!

SoM (TE0715-ZYNQ7030)

CPU/FPGA/RAM

Tr
an

sm
it

te
r

(A
D

93
64

)

Control

Data

JT
A

G

E
THU

A
R

T
/

SP
I/

SD
UART

+1.8V

RF Out

+8
V

In

Out

+3.3V+12V

Enable

PCB1

PCB2PCB3

ETH

Fig. 1.1 Block diagram of the transmitter module

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 7

2. Module Electrical Design

2.1. Base-band Signal Processing and System Management Sections

(a.k.a Digital Section)

An efficient SDR implementation of the transmitter requires application of an FPGA device. For this

purpose a Xilinx ZYNQ System-on-Chip device, which combines dual-core ARM Cortex-A9 processor

with the FPGA and a choice of interfaces was selected [2]. Most of the BB processing blocks are

implemented in the FPGA, while the ARM processor is used for system control and management

functions.

The design of a system based on ZYNQ SoC from scratch is time consuming and error-prone, since

the device requires many external components, e.g. Flash memory, SDRAM, interface drivers, clock

and power supplies. Therefore an off-the-shelf, ready-to-use System-on-Module from Trenz

Electronic GmbH is used in the transmitter module.

The key features of the TE0715-30-1I3 SoM [3] are listed below:

 Industrial-grade Xilinx Zynq SoC XC7Z030

 Rugged for shock and high vibration

 10/100/1000 Mbps Ethernet transceiver PHY

 MAC address EEPROM

 32-bit wide 1GB DDR3 SDRAM

 32 MByte quad SPI Flash memory

 Programmable clock generator

 Transceiver clock (default 125 MHz)

 Plug-on module with 2 × 100-pin and 1 × 60-pin high-speed hermaphroditic strips

 132 FPGA I/Os (65 LVDS pairs possible) and 14 PS MIO available on B2B connectors

 4 GTP/GTX (high-performance transceiver) lanes

 GTP/GTX (high-performance transceiver) clock input

 USB 2.0 high-speed ULPI transceiver

 On-board high-efficiency DC-DC converters (1.0 V, 1.5 V, 1.8 V power rails)

 System management CPLD

 Temperature compensated RTC (real-time clock)

 User LED

 Evenly-spread supply pins for good signal integrity

 50x40 mm module size

The TE0715 block diagram is depicted in Fig. 2.1.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 8

Fig. 2.1 TE0715 block diagram

The module (daughter-board) uses 2x100 pins and 1x60 pins board-to-board connectors to access

the following signals from the mother-board:

 Bank 14, Bank 34, Bank 35 Zynq GPIOs

 Bank 500, Bank 501 Zynq MIOs

 Bank 112 Zynq MGTs

 JTAG interface

 System Controller I/O pins

 SD card interface

 ETH interface

 USB interface

2.2. RF Section

(a.k.a Analog Section)

The RF part of the transmitter is based on the Analog Devices integrated transceiver AD9364. It is a

high performance, highly integrated radio frequency (RF) Agile Transceiver™ designed for use e.g. in

3G and 4G base station applications. Its programmability and wideband capability make it ideal for a

broad range of transceiver applications [4].

The key features of the AD9364 are listed below:

 RF 1 × 1 transceiver with integrated 12-bit DACs and ADCs

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 9

 band: 70 MHz to 6.0 GHz

 supports time division duplex (TDD) and frequency division duplex (FDD) operation

 tunable channel bandwidth (BW): <200 kHz to 56 MHz

 3-band receiver: 3 differential or 6 single-ended inputs

 superior receiver sensitivity with a noise figure of <2.5 dB

 Rx gain control - real-time monitor and control signals for manual gain Independent

automatic gain control

 2-band differential output transmitter

 highly linear broadband transmitter, Tx EVM: ≤−40 dB Tx, noise: ≤−157 dBm/Hz noise floor,

Tx monitor: ≥66 dB dynamic range with 1 dB accuracy

 integrated fractional-N synthesizers: 2.4 Hz maximum local oscillator (LO) step size

 multichip synchronization

 CMOS/LVDS digital interface

The AD9364 block diagram is depicted in Fig. 2.2.

Fig. 2.2 AD9364 block diagram

AD9364 is connected to the SoC via data and control lanes, including SPI interface for transceiver

configuration and control. In the CBSR communication module only the transmit path of AD9364

transceiver is used since the radio link is uni-directional (space to ground). However, the module is

“reception-ready”, i.e. it can be easily modified to act as a receiver and implement bi-directional link.

The RF signal from AD9364 is amplified by an Analog Devices HMC7357 integrated power amplifier to

improve the link power budget [5]. HMC7357LP5GE is a three-stage GaAs pHEMT MMIC 2 watt

power amplifier that operates between 5.5 and 8.5 GHz. The amplifier provides 29 dB of gain and

+35 dBm of saturated output power at 34% PAE from a +8V supply. With an excellent output IP3 of

+41.5 dBm, the HMC7357LP5GE is ideal for linear applications such as high capacity point-to-point

and point-to-multi-point radios or VSAT/SATCOM applications demanding +35 dBm of efficient

saturated output power.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 10

2.3. Power Supply Section

The CBSR communication module requires high-quality power supplies. The 8 V, 3.3 V, 1.8 V and

1.3 V supplies are derived from a single 12 V power supply on-board the satellite. The power section

uses the following devices:

 LM5060 – High-Side Protection Controller With Low Quiescent Current

 TPS54623 – Synchronous Step-Down SWIFT™ Converter With Light Load Efficiency and

Hiccup Overcurrent Protection

 ADP1755 – low dropout CMOS linear regulator

 MIC37301 – low-dropout linear voltage regulator

 TLV76750 – Precision Linear Voltage Regulator

Some of the power rails can be controlled independently by the FPGA to turn-off the sections

currently not in use. The transmitter module can be also put in the ‘off mode’ by an external ENABLE

control signal. This helps to save the energy which is a scarce resource on-board the satellite.

2.4. Interface Section

The CBSR communication module is interfaced to other satellite sub-systems via two 52-pin PC-104

stack-thru connectors. The following signal are available on the system connector:

 +12V – 3 lines

 GND – 11 lines

 Ethernet interface – 4 lines

 RS-232 interface – 2 lines (module control)

 RS-232 interface – 2 lines (debug)

 ENABLE – 1 line

All control lines uses 3.3V single-ended signaling.

2.5. Auxilary Section

Due to the limited module size some of the peripherals necessary for system development and

debugging have been moved to an external PCB which is removed when the module is installed

on-board the satellite. The PCB is connected to the main module using three zero-insertion-force

ribbon connectors.

The PCB contain the following interfaces/connectors:

 JTAG

 SPI – a “mirror” of the SPI available on the system connector

 CAN

 ETH

 2 x USB – emulation of ZYNQ SoC UART interfaces

 SD – full size SD card slot

 system reset button

2.6. Schematics

The detailed schematics of all sections can be found in Appendix A.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 11

3. Module Mechanical Design

The CBSR communication module uses 3 multi-layer PCBs, which are stacked together to form a

single, easy-to-use module.

The main PCB, which hosts the digital sections, part of the RF section (integrated transceiver) and

power section is an 95.89x90.17 mm, 8-layer PCB, including 3 board-to-board connectors for the SoM

as well as the PC-104 system connectors. The other part of the RF section (power amplifier) is located

on a separate PCB, which can contain a low noise amplifier if a bi-directional version of the CBSR

communication module is developed in the future.

The module is covered with a block of aluminum for heat dissipation and EM shielding. The block

holds the SMA connectors for attaching an antenna system. Patch-type transmit antenna has been

selected which provides 6dBi gain to improve the link budget.

Details of the mechanical construction (including PCBs) can be found in Appendix B as well as in

external step and gerber files.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 12

4. Transmitter implementation – PL part (FPGA)

4.1. Radio frame structure

The transmission is organized into radio frames depicted in Fig. 4.1. In consists of a preamble and

tunable number of subframes. We can distinguish three parts in the preamble. The first part is the

G_AMB used for AGC purposes. The second part is the T_AMB used for time synchronization. Finally,

the F_AMB is used for frequency offset estimation. Each subframe in a frame corresponds to a single

codeword coming from a turbo coder. Each subframe consists of 𝑛 partial codewords (PCWORD) and

𝑛 + 1 midambles used for phase offset estimation (P_AMB). Where 𝑛 is calculated based on the

currently selected coding rate

Fig. 4.1 Radio frame structure

4.2. Simulink model

The transmitter implementation in FPGA is prepared with the help of Matlab/Simulink and its HDL

Coder. In Fig 4.2 the transmitter block inputs and outputs are presented, the relevant ones are

described in Table 4.1.

Fig. 4.2 Transmitter block

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 13

Table 4.1 Inputs and outputs of transmitter block

Name Type Description

input_words Input 32-bit words loaded from software via DMA

words_valid Input Indication whether data in input_words line is valid

ENABLE_REG
Input/
Output

Register that stores i.a. a value that enables/disables the
transmitter. When its state is high, the signal can be
transmitted, when it’s low the transmitter will stop
sending samples its output (only after the internal data
buffer has been emptied)

RADIO_CONFIG_REG
Input

A register used to set:

 the coding rate of the turbo coder. There are 7 coding
rates settings from 0 to 6 (described in later sections)

 the transmission mode. There are 4 modes available
(values 0-3, described in later sections)

 the roll-off factor of the shaping RRC filter. There are 2
settings available i.e. 0 and 1.

 the length of the frequency offset estimation part of
the preamble. There are 3 possible values from 0 to 2
(described in later sections)

NUM_RF_SUBFRAMES_REG
Input/
Output

A line used to set the number of subframes in each radio
frame.

tx_out_I Output Transmitter in-phase component samples

tx_out_Q Output Transmitter quadrature component samples

valid_out Output Indication whether output samples are valid

tx_load_req Output
A line used to request data from the software. The high
output indicates that data can be sent to the block.

SUBFRAME_COUNT_REG Output The number of transmitted subframes

In Fig. 4.3 the general structure of the transmitter is presented. Since the scheme is quite complex

the main parts of the transmitter are shown and described in detail in the subsequent sections.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 14

Fig. 4.3 Overview of the transmitter Simulink schematics

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 15

4.3. Data loading and fake frame generation

The first part of the transmitter is shown in Fig. 4.4. It is responsible for requesting data from

software or the internal data source. It also prepares the data for the subsequent subsystems i.e. it

converts received 32-bit words into bits accepted by scrambling and coding subsystems described in

subsection 4.2.1.

Fig. 4.4 Data loading and fake frame generation part of transmitter schematics

In the proposed transmitter three modes of data transmission are foreseen:

1. Transmission of channel coded data from software

2. Transmission of channel coded data from the internal data generator

3. Transmission of repeatable uncoded data from the internal data generator

The realization of all of the modes is performed with the help of blocks 1 to 4 shown in Fig. 4.4.

Block number 1 (Fig. 4.5) is a Matlab function that implements a Finite State Machine (FSM)

responsible for requesting data from software or an internal data source. The block has 6 inputs and

4 outputs which are described in Table 4.2.

1

2

4

3

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 16

Fig. 4.5 Finite state machine for requesting data from software or internal data generator

Table 4.2 Inputs and outputs of RequestData block

Name Type Description

data_valid Input Indication whether there is valid data

frame_processing_ready Input
Indication whether the channel coder is ready to accept

new data

fifo_ready Input
Indication whether data symbols buffer is ready to accept

new data

coded_en Input
Indication whether coded data transmission mode is

selected

inject_fake_check Input
Flag used to trigger the use of fake (internally generated)

data until new data from software arrives

tx_enable Input Flag indicating whether the transmission is still enabled

tx_load_req Output
Signal responsible for requesting new data, either from

software or internal data generator. The data is requested
until we receive the required number of words i.e. 187

SH_enable Output Signal used to hold current data source selection

force_internal_data Output
Signal used to override the software data source in case

there is no valid data coming from the software

ostate Output
Indication of the current state of the FSM (used for

debugging)

Block number 2 is the internal data generator and its structure is depicted in Fig. 4.6 it uses a PN

sequence generator with the following polynomial 𝑥20 + 𝑥17 + 1. The data output of the generator

is tailored to fit the 32-bit words coming from the software. Each time there is a high RequestIn signal

a new word is generated that can be fed to the block responsible for unpacking words to bits (block

number 3). Block number 3, depending on transmission mode selection, can accept either data

coming from software or internal data as described above. The structure of the data unpacking block

is depicted in Fig. 4.7 It uses a simple state machine responsible for reading 32-bit words from the

FIFO queue in cycles of 32 samples. The word is then converted to a stream of bits that can be fed to

the next blocks in the processing chain.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 17

Fig. 4.6 Internal data generator

Fig. 4.7 Data unpacking subsystem

The final block (number 4, Fig. 4.8) is a controller used to generate bits for the uncoded

transmission mode. It has 4 inputs and 3 outputs which are described in Table 4.3

Fig. 4.8 Controller for handling fake uncoded data

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 18

Table 4.3 Inputs and outputs of fakeDataController block

Name Type Description

tx_enable Input Flag indicating whether the transmission is still enabled

num_phase_midamble Input
Number of midambles used for phase offset estimation used in

each subframe

num_subframes Input Number of subframes in radio frame

fifo_ready Input
Indication whether data symbols buffer is ready to accept new

data

inc_subframe_cnt Output Signal used to increment a subframe counter of the transmitter

data_en Output
Signal used for enabling reading fake uncoded bits from a

lookup table

sample_cri Output
Signal used to sample the state of the cri_sel input of the

transmitter in uncoded mode of transmission

The fakeDataController and RequestData blocks can be operational only when the TxEnable signal is

high. The tx_enable signal coming to the transmitter block can be controlled from software that

doesn’t know the internal state of the transmitter. If the software changed the state of the tx_enable

line when the transmitter is still processing data it could corrupt the data and the structure of the

frames and subframes for the next transmission session. To avoid this problem a simple function was

created which block is depicted in Fig. 4.9. Its task is to sample the state of the tx_enable of the

transmitter only when the subframe counter outputs the value 0, meaning this is the beginning of

the radio frame.

Fig. 4.9 Controller of the tx_enable state used for requesting data

4.3.1. Data scrambling, CRC insertion and channel coding

The second part of the transmitter (blocks 1 and 2 shown in Fig. 4.10) is responsible for preparing

the data for the OQPSK modulator firstly by scrambling the incoming bits and secondly by adding CRC

and channel coding it with a Turbo coder.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 19

Fig. 4.10 Data scrambling and coding part of transmitter schematics

The scrambling block (denoted by 1 in Fig 4.10) is using a PN sequence generator to modify the data

bits fed to it by performing an XOR operation as shown in Fig. 4.11. The PN sequence generator is

using the same polynomial as the generator used in internal data source (i.e. 𝑥20 + 𝑥17 + 1) but they

are independent of each other. The difference here is that we use only a single bit from the

generated sequence instead of 32 bits in the case of the internal data source generator.

Fig. 4.11 Data scrambling subsystem

The CRC and coding block is depicted in Fig. 4.12. It consists of two main parts. First, there is a CRC

calculation block that adds a 32-bit CRC to the subframe data, extending its length to 6016 bits

accepted by the turbo coder. The CRC sequence is generated using the following polynomial:

𝑥32 + 𝑥31 + 𝑥24 + 𝑥22 + 𝑥16 + 𝑥14 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1

The output of the CRC calculation block is fed to one of two turbo coders in an alternating manner.

We use two coders due to the processing delay of the coding process which could cause that the

data supply for the subframe assembly is not sufficient. In order to avoid overlapping of output data,

1 2

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 20

a dedicated control mechanism has been implemented. The output codeword length varies with

different coding rate values, possible lengths are shown in Table 4.4.

Fig. 4.12 CRC and channel coding subsystem

Table 4.4 CRI settings and coder output lengths

CRI value Coding rate Codeword length

0 0.91 6600

1 0.83 7260

2 0.76 7920

3 0.57 10560

4 0.38 15840

5 0.285 21120

6 0.19 31680

4.3.2. OQPSK modulation

The bits coming from the coding block are grouped to formed bit pairs which are mapped to OQPSK

samples in the OQPSK modulation block denoted with 1 in Fig. 4.13. Its internal structure is shown in

Fig. 4.14. Its task is to convert incoming bit pairs to OQPSK symbols and upsample it by the factor of

2. Each bit from the pair is upsampled. The bit in the imaginary branch of the symbol is delayed by

half the initial sampling rate. Combining together the delayed and not delayed branches into a single

complex sample produces an OQPSK symbol.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 21

Fig. 4.13 OQPSK modulation part of the transmitter schematics

Fig. 4.14 OQPSK modulation

4.3.3. Radio frame creation

Each sample produced by the data preparation part of the transmitter descriped above is stored in a

FIFO queue (block number 1 depicted in Fig. 4.15) which is controlled by a FSM implemented in the

TXStatus block (number 2 in Fig. 4.15). The TXStatus is responsible for the correct assembly of

subframes and radio frames. It has 6 inputs and 8 outputs as depicted in Fig. 4.16, the description of

the input/output lines is given in Table 4.5

1

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 22

Fig. 4.15 Radio frame creation part of the transmitter schematics

Fig. 4.16 Finite state machine used for assembling radio frames

Table 4.5 Inputs and outputs of TXStatus block

Name Type Description

tx_enable Input Indication whether the transmission is still enabled in software

tx_end Input Flag indicating that the high level of tx_enable signal has ended

data_available Input
Indication whether OQPSK symbols are present in the symbol

buffer

freq_midamble_len Input

Length of the part of a preamble used in frequency offset
estimation. There are 3 values possible: 544,1056 and 2080
(they are oversampled by 2)depending on the F_AMB_sel

setting

num_phase_midamble Input

A number of midambles used for phase offset estimation used
in each subframe. The number of midambles is calculated based

on coding rate and partial codeword length (330 OQPSK
symbols)

2

1

3

4

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 23

num_subframes Input Number of subframes in the radio frame

tx_select Output
Signal used to select appropriate part of the radio frame fed

into the shaping filter

preamble_en Output

Signal used to read initial preamble symbols from a lookup
table. The length of the preamble is 768 symbols (they are

oversampled by 2). The preamble consists of two parts. The First
256 samples are used for AGC purposes (G_AMB) and the
remaining 512 symbols are used for time synchronization

(T_AMB)

data_en Output Signal used to read OQPSK symbols from FIFO queue

freq_midamble_en Output
Signal used to read from a lookup table preamble symbols used

for frequency offset estimation. The length of F_AMB is
dependent on the freq_midamble_len.

phase_midamble_en Output
Signal used to read from a lookup table midamble symbols used
for phase offset estimation. The length of the phase midamble

is 166 (oversampled by 2)

pop_cri Output Signal used to get the currently used CRI value

inc_subframe_cnt Output A line used for counting transmitted subframes

eot_flag_out Output Signal used to generate an EOT frame

ostate Output Indication of the current state of the FSM (used for debugging)

Preamble and midambles are read from lookup tables stored in memory. In Fig. 4.17 a preamble

generator is presented. Its operation is rather straightforward i.e. the enable signal on the input port

enables the counter which generates an index from which we read the value from the lookup table

for the output. The generators for the frequency offset estimation part of the preamble and

midamble generator are identical in structure but differ in contents of the lookup table. The phase

midamble apart from being used for phase offset estimation is used to distinguish the coding rate in

the receiver. Each coding rate setting has its own form of midamble that is created by cyclically

shifting base Zadoff-Chu sequence used for phase estimation purposes.

Fig. 4.17 Preamble generator subsystem

Apart from the 3 modes of transmission described in section 4.1.1, there is a fourth mode in which

the transmitter will continuously transmit preambles (G_AMB with 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒𝑠

repeats of T_AMB). To control this mode of transmission FSM depicted in Fig. 4.18 was implemented.

Its inputs and outputs are described in Table 4.6

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 24

Fig. 4.18 Finite state machine used for assembling radio frames consisting of repeating preambles

Table 4.6 Inputs and outputs of TXStatusContTAMB block

Name Type Description

tx_enable Input Indication whether the transmission is still enabled in software

tx_end Input Flag indicating that the high level of tx_enable signal has ended

num_repeats Input
The number of T_AMB preamble repeats, set by the num_subframes

value

tx_select Output
Signal used to select appropriate part of the radio frame fed into the

shaping filter

g_amb_en Output
Signal used to read G_AMB preamble symbols from a lookup table.
The length of G_AMB is 256 symbols (they are oversampled by 2).

t_amb_en Output
Signal used to read T_AMB preamble symbols from a lookup table.
The length of T_AMB is 512 symbols (they are oversampled by 2).

4.3.4. Pulse shaping and transmitter output

The final step in the processing chain is pulse shaping and data type conversion of the samples to

unsigned integer format accepted by the DAC depicted in Fig. 4.19. The pulse shaping is performed

with a tunable root raised cosine filter. The tunable parameter of the filter is its roll-off factor 𝛼

which can be set by the shaping_filter_alpha_sel input of the transmitter. There are two possible

values of the 𝛼 parameters i.e. 0.22 when the shaping_filter_alpha_sel inputs value is 1 and 0.35

otherwise. The input of the pulse shaping filter are the samples of the radio frames assembled in

previous steps of the processing chain.

Fig. 4.19 Pulse shaping and output part of the transmitter

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 25

4.4. Custom-made IP core

4.5. Introduction

The FPGA-based signal processing routine, created with the aid of MATLAB HDL Coder, is

encapsulated into a user-developed Vivado IP core. To incorporate a transmitter IP core into a Vivado

block diagram, a Matlab HDL workflow coder is used. The workflow operates according to a given so-

called reference design, which specifies the Vivado block diagram, the way in which the custom-

made IP core is merged with it, and the board pin assignment (constraint file). The reference designs

have a form of TCL scripts.

In the current project, a reference design by Analog Devices, dedicated to PicoZED (adrv9361z7035)

board, is used as a baseline and adopted by the project researchers to meet the requirements of the

TE0715 SoM, manufactured by Trenz Electronic.

The original reference design by Analog Devices seems to be most accurate in the cases where the IQ

samples (for 2 transmit channels) are generated by the PS, and the PL is used, mainly, for interfacing

AD9361. Signal processing in PL is an option (the user-specified IP core can be by-passed in some

cases). There are four 16-bit input lines, and the data flow control is of a back-pressure type: the

AD9361 transceiver orders samples from the PL, and the request is forwarded to the PS.

In the current project, the data transferred from PS to PL via DMA have the meaning of binary

vectors instead of complex IQ samples; the data rate on the PS<>PL interface is significantly smaller

than the symbol rate on the SoC<>AD9364 interface as there is nothing else but PL responsible for

the physical-layer signal processing (scrambling, channel coding, interleaving, modulation, pulse

shaping, etc.). As a consequence, it is more accurate to consider only one wide data line on the

PS<>PL interface. Since it is not guaranteed that the PS is able to deliver new data vectors on the PL’s

request, it is necessary to wire a “data valid” line along with the data line.

4.5.1. Reference design customization

With the aim to overcome the disadvantages of the original reference design, the datapath is

significantly modified. Four 16-bit data lines have been replaced with one 32-bit data line.

Consequently, data streams are not interleaved anymore (interleaving required troublesome

synchronization between the streams), so the blocks, responsible for stream interleaving and

deinterleaving are removed. The data line is accompanied by a strobe line, missing in the original

reference design by Analog Devices. The utility_buffer IP, originally placed between DMA interface

and FIFO at the clock domains’ border, has been removed. It was devoted to alleviate the problem of

asynchronous type of data feed through DMA interface, but it has appeared to cause highly

undesired random delays.

The reference design by Analog Devices features more IP cores useless from the perspective of the

current project. In particular, it refers to the IP cores playing the role of HDMI, SPDIF, and I2S

interfaces; their removal brings reasonable FPGA resources savings.

Some minor changes, shown in Fig. 4.20, have been made in the settings of axi_ad9361 IP core,

responsible for transferring FPGA-generated IQ samples of a passband signal to AD9364 transceiver.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 26

Fig. 4.20 Configuration window of axi_ad9361 IP core

In detail, 1R1T mode is chosen to eliminate redundant support for two transmit channels (AD9364

features only one transmit channel). Additionally, TDD disable option is checked, since the AD9364 is

forced to operate permanently in Tx mode by an SPI write to AD9364 registers instead of periodic

Tx/Rx toggling, controlled via FPGA pins. Thanks to that, neither 24-bit TDD counter nor a few

reference registers of the same size are implemented in FPGA. The rest of configuration fields of

axi_ad9361 IP core take the default values. DDS feature is enabled for testing purposes.

Another improvement has been made in the domain of custom-made IP core clocking. In the original

reference design, the user’s IP core is clocked by the AD9364 clock divided by 2 (or by 4 in the case of

2 transmit streams – not applicable to the current design). It limits the system capability of serial

data processing, since half of the clock cycles are not usable. Instead, the custom-made IP core is

now clocked with the original AD9364 clock (rx_clk), distributed throughout the FPGA device directly

from a respective BUFG element, as shown in Fig. 4.21.

The decision to eliminate a separate clock domain for custom-made IP core results with a simpler

clock cross-domain management: there is only one clock-domain crossing in the data path, handled

safely by means of a FIFO in axi_ad9361_dac_dma IP core. To transfer commands and status

messages data between the time domains (fpga_clk0 and rx_clk) through AXI4-Lite, a 3-stage

synchronizer is placed in the axi_cpu_interconnect IP core. Together with AXI protocol handshaking,

it guarantees safe transfers. The principles of operation of axi_cpu_interconnect is explained

according to Fig. 4.22. The input AXI bus (S00_AXI) interfaces Zynq PS – it is clocked by the fabric

fpga_clk0 clock. The interconnect IP core is responsible for dispatching the commands to numerous

IP cores, featuring AXI4 interface, via the output AXI buses: M00_AXI … M04_AXI. All such IP cores

except for the custom-made data processing IP core are clocked by the same fpga_clk0 clock. In such

cases, the couplers visible in Fig. 4.22 are transparent (as explicitly shown for M03_AXI). For

M04_AXI, connected with the IP core clocked by rx_clk, the auto_cc sub-block is inserted. It contains

the abovementioned 3-stage synchronizer.

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 27

Fig. 4.21 AD9364 clock distribution throughout the FPGA device

Fig. 4.22 Internal structure of axi_cpu_interconnect

Taking into account asynchronous data transfer between the clock domains (for both data path and

the control/status AXI channel), it is desired to constrain intra-clock paths on FPGA as false paths,

thereby instructing the Vivado placer to ignore them; it helps overcome timing-related issues when

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 28

routing. Fig. 4.23 proves that the paths between clock domains: fpga_clk0 and rx_clk are successfully

set as false paths in Vivado.

Fig. 4.23 Clock interaction report for the implemented design in Vivado

Not only is the MATLAB HDL workflow responsible for generating appropriate interfaces of the

custom-made IP core and incorporating it into the reference design, but also for attaching

extraordinary constraint files to the project. The constraint files contain the settings related to the

hardware pinout, clock frequency, false paths, etc. The pinout for Trenz board differs from PicoZED

pinout in terms of voltage standard and exact position of SoC<>AD9364 connectors. For that reason,

the constraint files have been updated to meet the project requirements.

4.5.2. The use of Simulink HDL Workflow Advisor

For ease of use the customized reference design targeting Vivado 2018.2 has been stored and

integrated with the HDL Workflow of Matlab 2019a under the name of TE0715byMK – it should be

chosen as the Target platform in Step 1.1 of the HDL Workflow Advisor, as shown in Fig. 4.24. Step

1.4, shown in Fig. 4.25, brings the possibility to connect the inputs and outputs of the developed

Simulink block diagram to appropriate reference design wires (aka target platform interfaces). The

meaning of specific target platform interfaces is explained in Table 4.7. It does not include the

Simulink ports attached to the AXI4-Lite interface, used to send control commands from PS to PL and

read diagnostic messages in the opposite direction.

After passing checks in Steps 2.1-2.4, the HDL code for the custom-made IP core is generated in

Step 3.2 of HDL Workflow Advisor. The generated IP core is deposited in a folder specified by the

user and can be manually placed into any Vivado block diagram. However, the customized reference

design TE0715byMK features the possibility to automatically integrate the IP core with the block

diagram. It can be done in Step 4.1 of HDL Workflow Advisor. If the process ends successfully, a link

to a new-created Vivado project appears in a log window of HDL Workflow Advisor, as shown in

Fig. 4.26). Clicking the link launches Vivado and the project opens. It is not suggested to run

remaining steps of HDL Workflow Advisor, as they are accurate only for the case when FPGA

processing is controlled by Simulink (a kind of hardware-software co-simulation).

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 29

Fig. 4.24 Step 1.1 of HDL Workflow Advisor

Fig. 4.25 Step 1.4 of HDL Workflow Advisor

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 30

Table 4.7 Target platform interfaces in HDL Workflow Advisor

Name Type Mating pin on Simulink
diagram

Description

DataIn Input inputWords
32-bit data vectors send from PS
via DMA

ValidIn Input wordsValidIn Strobe line for input data

SampleRequestIn Input (not used)

This line is periodically strobed by
axi_ad9361 IP core to request
subsequent IQ samples; for 1R1T
mode, a pulse appears every 2nd
AD9364 clock cycle

SampleReOut
SampleImOut

Output
Tx_out_I
Tx_out_Q

16-bit IQ samples of the passband
signal, represented in 2’s
complement format; actually, 4
least significant bits are
unimportant since AD9364 is
equipped with a 12-bit DAC

DataRequestOut Output TxLoadReq
Request for a new data vector
destined for the FIFO at the clock-
domain crossing

Fig. 4.26 Result of successful execution of the last step of HDL Workflow Advisor

4.5.3. Vivado project details

The complete block design of Vivado project is shown in Fig. 4.27, while a closeup on the custom-

made IP core is presented in Fig. 4.28. One can easily recognize the target platform interfaces of the

IP core, described in Table 4.7. There are some additional lines: AXI4-Lite bus (to receive control

commands from PS and send status messages), as well as reset and clock lines (separate for AXI bus

sub-module and the rest of the IP core). Since the clock-domain crossing is located in

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 31

axi_cpu_interconnent, the whole custom-made IP core clocking belongs to a single clock domain of

rx_clk, originated from l_clk pin of axi_ad9361 block. The IP core reset line is conjugated with

PS reset by util_ad9361_divclk_reset block, responsible for transferring the PS-generated reset to

rx_clk clock domain. Note that the IP core must be additionally resetted by an AXI write after AD9364

has finished all callibrations. Failure to do so might lead to unpredictable IP core operation and

metastability.

The design is synthesized with the clock constraints specified according to the most demanding

20 MHz bandwidth transmission mode. The mode choice is managed by appropriate frequency

setting of rx_clk on AD9364 and impacts the speed of data passing through the whole data path in

the rx_clk domain.

Fig. 4.28 Custom-made IP core

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 32

Fig. 4.27 Vivado block design

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 33

5. Transmitter Implementation – PS part (software)

5.1. TX vs RX – disambiguation

Processing System part is run on two boards, mainly:

 Trenz board (board version: TE0715-04-30-1I3),

 MITX (aka MiniITX board with Z100 FPGA, board version: Mini-ITX-7Z-ASY-G).

The most recent HDL version Analog Devices’ HDL that supports AVNET’s MiniITX box is hdl_2017_r1,

while HDL version that is compatible with Trenz board is hdl_2018_r2. A chain of dependencies

caused by such a seemingly unimportant version difference results in two different Linux O/S

versions that run on those boards. It is of an uttermost importance to note that such a choice of O/S

version was dictated by technical arguments, not by dogmatic or opinionated ones. Details are

shown in the table below.

Side Board HDL O/S Vivado Matlab

TX Trenz TE0715-04-30-1I3 hdl_2018_r2 2018_R2 2018.2 2019a

RX Mini-ITX-7Z-ASY-G hdl_2017_r1 2017_R1 2016.4 2017b

5.2. Operating System

Transmitter module is based on Trenz board TE0715-04-30-1I3, a consequence of which is using

Analog Devices’ Linux version 2018_R2 (kernel 4.14.0). [Note, however, that due to the

unavailability of the final board at the time of preparation of this document, the chosen version of

O/S was tested only on Trenz’s motherboard TE0705-04. As a result, this O/S version is not yet

decided to be final.]

5.2.1. Cross-compiling Tools

Linux kernel together with all supporting libraries and tools were built with GCC 11.2.0. [As of the

preparation time of this document, the final version of GCC is practically frozen, although it still might

be changed to a different one if necessary.]

5.2.2. Shell

O/S is interfaced via ash (Almquist shell).

5.2.3. Kernel Configuration

Kernel was configured using a customized Xilinx configuration provided by Analog Devices Inc. in the

source tree of Linux kernel under the name [xilinx_zynq_defconfig]. The customization

involved additional configuration of:

 DMA Engines (with Xilinx DMA Engines),

 AXI DMAC,

 AD9361,

 AD9517, and

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 34

 AXI DDS (Digital Direct Synthesizer).

5.2.4. FPGA Driver and Kernel Modules

FPGA Driver is loaded as a kernel module during the system boot-up. Detailed documentation of the

driver attributes can be found in the auto generated documentation file [10]. Delivered as an

attachment to this document. [Note, however, that eventual further changes to the implementation

of the IP Core may require corresponding updates to the driver documentation].

5.2.4.1. Driver Attributes Description

As mentioned previously, the documentation describing driver attributes is automatically generated.

A similar approach is used to create the driver code (obviously, only the most redundant parts). This

is achieved by describing driver’s attributed in a YAML file, which in turn is used to generate driver’s

and Latex’s code for the driver itself and its documentation, respectively. Such an approach was used

in order to easily keep in sync changes made to the driver and its documentation. An example

entrance that describes the hardware_version attribute is shown in the listing below.

Snip...

- name: hardware_version

 generated_driver_code:

[offsets,driver_entrances,driver_attributes_short,help_messages]

 type: __u32

 rd_offset: 0x04■■

 wr_offset: null

 rd_buffer_size: 16

 wr_buffer_size: 10

 rd_function: scnprintf

 wr_function: kstrtou32

 mask_spec: null

 trx_side: [tx,rx]

 help_msg: |-

 None

 description: |-

 Version of bit-stream hardcoded in the hardware.

 It is not possible to write into this register!

 hardware_name: DEV_ID

 available_values_hardware: null

Snip...

5.2.4.2. Kernel Modules Loading

Despite most of the kernel modules being compiled directly into the kernel itself, the FPGA driver is

not. Such an approach allows eventual changes to the driver without the need of recompiling the

whole kernel. The script used to load / unload kernel modules (which is located in

[/etc/rc.d/init.d/modules_conf]) is presented below. Note that contrary to most

arguments that such scripts accept, this particular one also accept arguments: load, unload and

reload (which corresponds to standard: start, stop and restart, respectively). Such an

approach allows using semantic that is closer to module loading / unloading. The configuration file

that drives the modules loading is located in [/etc/modules.d/modules.conf] and it is

discussed in the next section.

#!/bin/ash

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 35

modules auto loading/unloading

. /etc/rc.d/init.d/functions

modules_config_file="/etc/modules.d/modules.conf"

modules_load_unload() {

 local modprobe_param="${1}"

 local msg="loading"

 ["${modprobe_param}" == "-r"] && msg="unloading";

 echo -n "${0}: Checking whether ${modules_config_file} exists and is valid: "

 [-r ${modules_config_file}] && grep -qv "^($|#)" ${modules_config_file}

 local ERR=$?

 [0 == ${ERR}] && true || false

 check_status

 [0 == ${ERR}] || { echo "${0} Not ${msg} modules! Problems with

${modules_config_file} file!"; exit 0; }

 sleep 0.1

 while read module args; do

 # Skipping blank or commented-out lines"

 case "${module}" in

 ""|"#"*) continue;;

 esac

 modprobe ${modprobe_param} ${module} ${args}

 ERR=$?

 echo -n "${0}: ${msg} ${module} with params: `["" != "${args}"] && echo

${args} || echo -*NONE*-`: "

 [0 == ${ERR}] && true || false

 check_status

 sleep 0.1

 done < ${modules_config_file}

}

case "$1" in

 start|load)

 modules_load_unload ""

 ;;

 unload|stop)

 modules_load_unload "-r"

 ;;

 reload|restart)

 $0 stop

 sleep 1

 $0 start

 ;;

 *)

 echo "Usage: ${0} {start|stop|restart|load|unload|reload}"

 exit 1

 ;;

esac

exit 0

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 36

5.2.4.2.1. Modules configuration file

The aforementioned modules configuration file (which is located in

[/etc/modules.d/modules.conf]) allows loading arbitrary modules (not only the FPGA

driver). The example script is shown in the listing below. Besides specifying modules to load, it also

allows specifying module’s parameter, e.g., in the listing below module fpgatrx is loaded with

parameter DEBUG set to 1. Kernel object files that contain the modules’ code are located in

[/lib/modules/$(uname -r)/kernel/drivers/], where [$(uname –r)] is release of

the running kernel, in our case it is: 4.14.0-xilinx-ge77ffb40e9a0-dirty. [But as already

mentioned this release might still be subject to an eventual change.]

File: /etc/modules.d/modules.conf

In order to load module at the system boot-up, add:

module_name module_param_1 module_param_2

fpgatrx DEBUG=1

5.2.5. Libraries and Tools

O/S is delivered with tools and libraries described in the table below. [Please note that the final

versions of some of these artifacts may be changed if deemed necessary.]

Tools / Library Version TX Version RX Description

Binutils 2.27 Set of tools and libraries for building binary
executable(s), e.g., liker, assembler, etc. All
build for ARM Cortex A9 processor, but without
dubious optimisation flags.

Busybox 1.24.2 Swiss-army-knife toolbox with standard set of
tools for working in a Linux environment. (All
tools are delivered as via symbolic links to one
executable.)

IANA-ETC 2.30
patched

 Data / information package for network
protocols and services.

MPC 1.0.3 Arbitrary precision floating-point complex
arithmetic library. (GCC dependency.)

MPFR 3.1.4 Arbitrary precision floating-point library. (GCC
dependency.)

musl-libc 1.1.19 Standard C library for embedded systems.

zlib 1.2.11 Data compression library.

netplug 1.2.9.2 GNU/Linux daemon for network services.

Dropbear 2018.76 Lightweight implementation of SSH library.

LibXML2 2.9.8 XML parsing library, implemented in C. libiio
dependency.

Boost 1.67 Boost – an umbrella of C++ utility libraries. Most
of them are header-only libraries. Only three
are installed on the final system:
libboost_atomic, libboost_chrono,

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 37

libboost_system.

tree 1.7.0 1.7.0 Command line recursive directory viewer /
explorer.

libiio 0.14 Hardware abstraction layer library via IIO
module (Industrial Input / Output) for
GNU/Linux. Mainly used to

gtest 1.11.0 1.11.0 Unit test library.

gflags 2.2.1 Command line parsing library.

googlebenchmark 1.6.1 1.6.1 Benchmarking library

{fmt} 8.1.1 8.1.1 Text formatting library

iproute2 ss190197 Network support tools.

5.2.6. Device Tree and Node Configuration

In order to easily distinguish between various systems configurations we add to the device tree file

parameter describing specific configuration of the board. An excerpt from a device tree is shown

below.

/{

 wzldevicemode {

 mode = "trenz";

 };

};

On the running system, current [wzldevicemode] (WZL here stands for Wireless ZYNQ Lab) can be

read form [/sys/firmware/devicetree/base/wzldevicemode/mode] file. In the case

the node describing the current configuration changes, the file with the fixed name that contains the

actual location of the current configuration is located in [/etc/radio/wzl-dev-mode-file-

location]. Such an approach ensures a single reference point to the actual location of the the file

describing the device mode.

Definition of the FPGA implementation of the custom made IP Core is also provided in the device tree

(in the FPGA/amba_pl section). The entrance in the device tree for SimpleQPSK IP Core is shown

below.

/{

 amba_pl: amba_pl {

 #address-cells = <1>;

 #size-cells = <1>;

 compatible = "simple-bus";

 ranges ;

 SimpleQPSK_ip_0: SimpleQPSK_ip@43c00000 {

 compatible = "xlnx,SimpleQPSK-ip-1.1";

 reg = <0x43c00000 0x10000>;

 };

 // ...

 };

};

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 38

5.2.7. RF Configuration

RF configuration files reside in the [/etc/radio] directory on the primary/root partition. An

example listing of subset of its directories is shown below.

/etc/radio/filters

├── cubesat-filter-v0001.ftr

├── cubesat-filter-v0002-1R1T-mode.ftr

├── cubesat-filter-v0003-61dot44.ftr

├── cubesat-filter-v0004-30dot72.ftr

├── cubesat-filter-v0005-7dot68-pll-ad9364.ftr

├── cubesat-filter-v0006-15dot36-pll-ad9364.ftr

└── lte_5MHz.ftr

/etc/radio/current/

├── ad9361-config.gflags

├── config-dispatcher.gflags

├── session-plan.yaml

└── session-scheduler-config.gflags

As can be deduced from the listing above, definition of FIR filters is in [/etc/radio/filters]

directory. An example FIR filter definition file is show below. Its format is self-explanatory.

$ head -12 /etc/radio/filters/lte_5MHz.ftr

Generated with AD9361 Filter Design Wizard 16.1.3

MATLAB 9.2.0.538062 (R2017a), 25-May-2018 16:55:22

Inputs:

Data Sample Frequency = 7680000 Hz

TX 3 GAIN 0 INT 2

RX 3 GAIN -6 DEC 2

RTX 983040000 122880000 61440000 30720000 15360000 7680000

RRX 983040000 122880000 61440000 30720000 15360000 7680000

BWTX 4372840

BWRX 4694670

-5,-10

0,-21

...

File [lte_5MHz.ftr] is used only for demonstration without disclosing actual details of the FIR

filters used in the real system (mainly number and values of consecutive filter taps).

5.2.8. Application Configuration Files

Besides FIR filters configuration files [/etc/radio] directory also contains

/etc/radio/current/

├── ad9361-config.gflags

├── config-dispatcher.gflags

├── session-plan.yaml

└── session-scheduler-config.gflags

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 39

These files contain configurations of the custom applications and are described more thoroughly

further in the document. The [/etc/radio/current] directory is in fact a soft link to the actual

directory that contains configuration for a particular transmission side (TX or RX).

5.2.9. Pre-O/S Components and Boot Sequence / Order

Boot sequence on ARM-based hardware is divided into separate stages. Initially the FSBL (First Stage

Boot Loader) prepares hardware, initializes CPUs and starts SSBL (Second Stage Boot Loader), which

in our case is U-boot. Then SSBL/U-Boot decompresses the Linux kernel image and loads it together

with a device tree describing the hardware and peripherals into memory. Next, the control is passed

to the kernel, which boots itself, launches [/sbin/init] program that finalizes the Linux booting-

up and starts services and applications required for ensuring the whole system is in an operational

state.

5.2.9.1. FSBL

Beside standard initialization, Xilinx’s FSBL allows configuring additional hardware via FSBL hooks. For

example, patch provided by Trenz allows configuring SI5338 module.

In the next three sections we show logs from FSBL, U-Boot and loading Linux kernel. These logs can

be used as a reference for adjusting and / or fine-tuning different versions of the mentioned software

components. They should be treated more as a guidance that a gold-standard when preparing

custom solutions.

5.2.9.1.1. FSBL Boot Logs

FSBL loading logs are presented below. The manifest info section describes internals used to create a

final [BOOT.BIN] file, it is not a necessary part and it is used solely for simplifying identification of

the loaded bitstream.

MANIFEST INFO:

HDF FILE: sr-cubesat-trenz-tx-v0011.hdf

HDF GIT SHA: 8b041aee83724fadcd64867d266cabf8cdbfb005

IP CORE REPORT PATH:

d:/TrenzPrebuild/system/ip_lib/SimpleQPSK_ip_v1_1/doc/doc_arch_axi4_lite.jpg

ZYNQ XTOOLCHAIN GIT SHA: bad57fe9919f23f83c19aeeb71f0a3bb37e2e70a

FSBL build date: Tue, 14 Dec 2021 17:12:32 +0100

Xilinx Zynq First Stage Boot Loader (TE + PUT/TGM modified)

Release 2018.2 Dec 14 2021-17:12:50

5.2.9.2. SSBL / U-boot

U-boot logs are only for the reference.

U-Boot 2018.01 (Oct 11 2021 - 16:38:10 +0200) Xilinx Zynq ZC702

Board: Xilinx Zynq

Silicon: v3.1

I2C: ready

DRAM: ECC disabled 1 GiB

MMC: sdhci@e0100000: 0 (SD)

** No device specified **

Using default environment

In: serial@e0000000

Out: serial@e0000000

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 40

Err: serial@e0000000

Board: Xilinx Zynq

Silicon: v3.1

Net: ZYNQ GEM: e000b000, phyaddr ffffffff, interface rgmii-id

eth0: ethernet@e000b000

U-BOOT for petalinux

ethernet@e000b000 Waiting for PHY auto negotiation to complete......... TIMEOUT !

Hit any key to stop autoboot: 0

reading uEnv.txt

486 bytes read in 12 ms (39.1 KiB/s)

Loaded environment from uEnv.txt

Importing environment from SD ...

Running uenvcmd ...

Copying Linux from SD to RAM...

reading uImage

4076304 bytes read in 238 ms (16.3 MiB/s)

reading devicetree.dtb

10683 bytes read in 17 ms (613.3 KiB/s)

** No boot file defined **

5.2.9.3. Linux Kernel

Linux kernel logs are only the reference.

Booting kernel from Legacy Image at 03000000 ...

 Image Name: Linux-4.14.0-xilinx-ge77ffb40e9a

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 4076240 Bytes = 3.9 MiB

 Load Address: 00008000

 Entry Point: 00008000

 Verifying Checksum ... OK

Flattened Device Tree blob at 02a00000

 Booting using the fdt blob at 0x2a00000

 Loading Kernel Image ... OK

 Loading Device Tree to 07ffa000, end 07fff9ba ... OK

Starting kernel ...

Booting Linux on physical CPU 0x0

Linux version 4.14.0-xilinx-ge77ffb40e9a0-dirty (tgm@asus) (gcc version 8.3.0

(GCC)) #1 SMP PREEMPT Mon Oct 25 18:38:15 CEST 2021

CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache

OF: fdt: Machine model: xlnx,zynq-7000

Memory policy: Data cache writealloc

cma: Reserved 16 MiB at 0x3f000000

random: fast init done

percpu: Embedded 16 pages/cpu @ef7cf000 s35084 r8192 d22260 u65536

Built 1 zonelists, mobility grouping on. Total pages: 260608

Kernel command line: console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk

rootfstype=ext4 rootwait

PID hash table entries: 4096 (order: 2, 16384 bytes)

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

Memory: 1012868K/1048576K available (6144K kernel code, 266K rwdata, 1672K

rodata, 1024K init, 152K bss, 19324K reserved, 16384K cma-reserved, 24576)

Virtual kernel memory layout:

 vector : 0xffff0000 - 0xffff1000 (4 kB)

 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)

 vmalloc : 0xf0800000 - 0xff800000 (240 MB)

 lowmem : 0xc0000000 - 0xf0000000 (768 MB)

 pkmap : 0xbfe00000 - 0xc0000000 (2 MB)

 modules : 0xbf000000 - 0xbfe00000 (14 MB)

 .text : 0xc0008000 - 0xc0700000 (7136 kB)

 .init : 0xc0900000 - 0xc0a00000 (1024 kB)

 .data : 0xc0a00000 - 0xc0a42a80 (267 kB)

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 41

 .bss : 0xc0a42a80 - 0xc0a68e44 (153 kB)

Preemptible hierarchical RCU implementation.

 RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.

 Tasks RCU enabled.

RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2

NR_IRQS: 16, nr_irqs: 16, preallocated irqs: 16

efuse mapped to f0800000

slcr mapped to f0802000

L2C: platform modifies aux control register: 0x72360000 -> 0x72760000

L2C: DT/platform modifies aux control register: 0x72360000 -> 0x72760000

L2C-310 erratum 769419 enabled

L2C-310 enabling early BRESP for Cortex-A9

L2C-310 full line of zeros enabled for Cortex-A9

L2C-310 ID prefetch enabled, offset 1 lines

L2C-310 dynamic clock gating enabled, standby mode enabled

L2C-310 cache controller enabled, 8 ways, 512 kB

L2C-310: CACHE_ID 0x410000c8, AUX_CTRL 0x76760001

zynq_clock_init: clkc starts at f0802100

Zynq clock init

clocksource: ttc_clocksource: mask: 0xffff max_cycles: 0xffff, max_idle_ns:

537538477 ns

sched_clock: 16 bits at 54kHz, resolution 18432ns, wraps every 603975816ns

timer #0 at f080a000, irq=16

sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 4398046511103ns

clocksource: arm_global_timer: mask: 0xffffffffffffffff max_cycles: 0x4ce07af025,

max_idle_ns: 440795209040 ns

Switching to timer-based delay loop, resolution 3ns

Console: colour dummy device 80x30

Calibrating delay loop (skipped), value calculated using timer frequency.. 666.66

BogoMIPS (lpj=3333333)

pid_max: default: 32768 minimum: 301

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)

Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)

CPU: Testing write buffer coherency: ok

CPU0: thread -1, cpu 0, socket 0, mpidr 80000000

Setting up static identity map for 0x100000 - 0x100060

Hierarchical SRCU implementation.

smp: Bringing up secondary CPUs ...

CPU1: thread -1, cpu 1, socket 0, mpidr 80000001

smp: Brought up 1 node, 2 CPUs

SMP: Total of 2 processors activated (1333.33 BogoMIPS).

CPU: All CPU(s) started in SVC mode.

devtmpfs: initialized

VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4

clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns:

19112604462750000 ns

futex hash table entries: 512 (order: 3, 32768 bytes)

pinctrl core: initialized pinctrl subsystem

NET: Registered protocol family 16

DMA: preallocated 256 KiB pool for atomic coherent allocations

cpuidle: using governor menu

hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.

hw-breakpoint: maximum watchpoint size is 4 bytes.

zynq-ocm f800c000.ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0880000

zynq-pinctrl 700.pinctrl: zynq pinctrl initialized

e0000000.serial: ttyPS0 at MMIO 0xe0000000 (irq = 36, base_baud = 6249999) is a

xuartps

console [ttyPS0] enabled

vgaarb: loaded

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

media: Linux media interface: v0.10

Linux video capture interface: v2.00

pps_core: LinuxPPS API ver. 1 registered

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti

<giometti@linux.it>

PTP clock support registered

EDAC MC: Ver: 3.0.0

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 42

FPGA manager framework

fpga-region fpga-full: FPGA Region probed

Advanced Linux Sound Architecture Driver Initialized.

clocksource: Switched to clocksource arm_global_timer

NET: Registered protocol family 2

TCP established hash table entries: 8192 (order: 3, 32768 bytes)

TCP bind hash table entries: 8192 (order: 4, 65536 bytes)

TCP: Hash tables configured (established 8192 bind 8192)

UDP hash table entries: 512 (order: 2, 16384 bytes)

UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)

NET: Registered protocol family 1

RPC: Registered named UNIX socket transport module.

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

RPC: Registered tcp NFSv4.1 backchannel transport module.

hw perfevents: no interrupt-affinity property for /pmu@f8891000, guessing.

hw perfevents: enabled with armv7_cortex_a9 PMU driver, 7 counters available

workingset: timestamp_bits=30 max_order=18 bucket_order=0

jffs2: version 2.2. (NAND) (SUMMARY) �© 2001-2006 Red Hat, Inc.
bounce: pool size: 64 pages

io scheduler noop registered

io scheduler deadline registered

io scheduler cfq registered (default)

io scheduler mq-deadline registered

io scheduler kyber registered

dma-pl330 f8003000.dmac: Loaded driver for PL330 DMAC-241330

dma-pl330 f8003000.dmac: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4

Num_Events-16

[Trenz board version: TE0715-04-30-1I3.]

[Final O/S version is not yet decide due to the lack of final PUT/Trenz boards.]

5.3. Custom Made Applications

5.3.1. Application: ad9361-config.run [TX + RX]

[ad9361-config.run] application is used to configure AD9361 and the internal IP Core. The

program is launched automatically at the system startup. To an extent it might be re-launched during

the normal operational state of the system, although such an on-the-fly-re-configuration is strongly

discouraged, as it may result in a non-optimal system state (e.g. not every AD9361 and IP Core

internals could be properly configured).

The configuration of [ad9361-config.run] application is kept in [/etc/radio/current/

ad9361-config.gflags] file. Note, however, that on the TX side, the location of the

configuration file might be changed due to the availability of the pre-boot/post-boot configuration

update mechanism. This mechanism is realized by an appropriate software and it is transparent from

the point of view of [ad9361-config.run] application.

The example of the configuration file mentioned in this section is shown below.

Default configuration of AD9361

Note that config lines cannot have comments!

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 43

Cubesat specific configuration [BEGIN]

Without this option nothing in this section

is taken into account during configuration

--conf_cubesat

Quadrature tracking

--quad_track=ON

ENSM mode

Only TX and RX are support.

Anything else will lead to problems

Values: TX, RX

--ensm_mode=TX

Cubesat specific configuration [END]

FPGA TRX config [BEGIN]

Turn ON/OFF FPGA TRX (TDD)

--fpgatrx_enable=ON

Select code rate

Values: 0, 1, 2, 3, 4, 5, 6

--code_rate=0

TX Data source

Values: 0, 1, 2

--fpgatrx_tx_data_src=0

Length of frequency offset estimation preamble

Values: 0, 1, 2

--fpgatrx_frequency_offset_estimation_preamble_length=2

Waiting time (in ms) before configuring / enabling FPGA TRX module

--fpgatrx_enable_wait_time_ms=950

Wait time (in ms) after resetting the outer FPGA TRX IP CORE

We wait only if --fpgatrx_outer_ipcore_reset is present, i.e.,

it is not uncommented.

--fpgatrx_wait_after_outer_ipcore_reset_ms=45

Whether we do or do not reset the outer FPGA TRX IP CORE.

Comment if you want to disable resetting.

--fpgatrx_outer_ipcore_reset

FPGA TRX config [END]

Direction

--direction=TRX

FIR filter configuration

--fir_filter_file=/etc/radio/filters/cubesat-filter-v0004-30dot72.ftr

--fir_filter=ON

Extra register content

Format used is: reg1 << val1; reg2 << val2

NO QUOTES AROUND REGISTERS!

--extra_registers_content=0x035 << 0x0B

Carrier frequency in GHz

TX/RX filters on the small PUT radio boards have range 2120 -- 2170 [MHz]

--c_frq=2.145

Bandwidth in MHz

#--bandwidth=15

--bandwidth=28

Sampling rate in MSPS (mega samples per second)

#--sampling_rate=7.68

--sampling_rate=40.816326

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 44

TX power gain in dB

--tx_power_gain=-25

Logging capability

--log

Disable ADI digital interface FIR tune

(tuning must be disabled on picozed/ADRV1CRR-FMC)

--disable_digital_interface_tune_fir

To simulate the bahaviour without setting any AD9361 config

Uncomment the following line:

--dry-run

5.3.2. Application: config-dispatcher.run [TX only]

[config-dipatcher.run] is the application that is responsible for:

 Reading configuration from OBC (via exchanging nanopb messages on the UART interface)

for dependent applications, which are

o [ad9361-config.run] application, and

o [session-scheduler.run] application.

 Translating this configuration to the format that is accept by the two applications mentioned

in previous bullet points.

 Preparing custom configuration files that are then delivered to the dependent applications.

An example configuration file for this application is shown below.

Default configuration for config-dispatcher.run

UART Configuration [BEGIN]

TTY device

--tty=/dev/ttyPS1

TTY parity

--parity=NoParity

TTY Duplex mode

--duplex=FullDuplex

TTY speed (in bits per second)

--speed=115200

UART Configuration [END]

Time for which we wait to dispach configurations.

This time is in only counted until we receive first

configuration-related message. This is because the

exact delay cannot be precisely computed; assuming

the worst-case scenario the size of the configuration

file must be treated as a random variable.

--uart_begin_config_wait_time_ms=1750

Configuration maps:

Note: All configuration maps **must** be specified in single line.

Semicolon at the end is optional

--config_maps=static_config: /etc/radio/current/ad9361-config.gflags > /var/cache/ad9361-

config.gflags; session_plan: /etc/radio/current/session-plan.yaml > /var/cache/session-

plan.yaml;

Logging

--log

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 45

To 'dry' run it uncomment the following line:

--dry-run

5.3.3. Application session-scheduler.run [TX only]

[session-scheduler.run] application is responsible for applying on-the-fly changes to the

AD9361 (if necessary and possible) and to the custom IP core delivered by PUT. This application

consumes the session plan (see an example file below) and applies the configuration at specified

epochs / times.

During the communications session, the following transmission parameters can be changed:

 code rate (entrance: [fpgatrx/code_rate]),

 TX power (entrance: [ad9361/out_voltage0_hardwaregain] – there is possibility to change TX

power of only 0-th channel, since CBFR is equipped with only one antenna).

REMARK! Note also that the order of epochs in the session plan need not to be arranged in a time

ordered manner. The required sorting would be realized by the software.

Default configuration of satellite's session scheduler

Session plan contains a list of 'epoch' and 'config' pairs

that specify the time and exact configuration that is applied

to the RF communication module (a.k.a. CBTM, C-Band Transmitter Module).

session_plan:

 ## Epoch ('epoch') is the time at which the configuration is applied.

 ## Its format is; YYYY-MM-DD HH:MM:SS

 - epoch: 2021-08-19 16:35:30

 ## Configuration ('config') contains a list of strings of the format:

 ## 'value' > 'configuration_entity'

 ## Character '>' is mandatory!

 config:

 - 1 > fpgatrx/code_rate

 - -24.50 > ad9361/out_voltage0_hardwaregain

 - epoch: 2021-08-19 13:55:55

 config:

 - 4 > fpgatrx/code_rate

 - -25 > ad9361/out_voltage0_hardwaregain

 - epoch: 2021-08-19 13:56:30

 config:

 - 0 > fpgatrx/code_rate

 - -26.50 > ad9361/out_voltage0_hardwaregain

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 46

Bibliography

[1] CS.S1.Gen System specification

[2] Zynq-7000 All Programmable SoC Overview (DS190)

[3] TE0715 Technical Reference Manual

[4] AD9364 RF Agile Transceiver Data Sheet

[5] HMC7357 Data Sheet

Rafał Krenz, ed. Transmitter Module CS.S2.SR

Version 1.0 10.03.2022 47

Appendix A

Schematics of the CBSR transmitter module.

Appendix B

Mechanical design of the CBSR transmitter module.

Note: full module documentation can be found in external step and gerber files.

