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The CBSR communication module on-board the satellite is designed to minimize the volume and 

power consumption, while maximizing its performance at the same time. Both the transmitter (on-

board the satellite) and the receiver (in the ground station) are implemented using Software Defined 

Radio technique. However, in this document only the electrical and mechanical design of the satellite 

communication module is discussed. 
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List of acronyms 
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PUT Poznań University of Technology 

SDR Software Defined Radio 
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SoM System-on-Module 

SoC System-on-Chip 

t.b.d to be determined 
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1. Module Characteristics  

1.1. General Parameters 

The CBSR transmitter module has been designed to fit on-board the Cubesat nanosatellite developed 

by SatRevolution S.A. The mechanical construction and the electrical parameters of the module have 

been agreed by SR and PUT within a joint R&D project financed by NCBR. 

Based on the system specification presented in [1], the electrical parameters of the module are the 

following: 

 carrier frequency – user selectable between 5500 MHz and 6000 MHz, default 5840 MHz 

 carrier frequency step – 2.4 Hz 

 frequency stability –  < 1ppm, -40°C ÷ +85°C 

 channel bandwidth – user selectable: 1 MHz, 1.25 MHz, 5 MHz, 10 MHz, 20 MHz 

 transmit power – 2W (+33dBm) max. @50 Ω, user selectable in 0.25dB steps 

 modulation type - digital (quadrature) - OQPSK 

 channel coding – Turbo, user selectable code rate: 0.19 – 0.91 

 power supply – 12 V, 2.5 A max. 

 power consumption: 

o off mode – t.b.d. (100uA?) (BB-OFF, PA-OFF) 

o sleep mode – t.b.d. (BB-ON – sleep mode, PA-OFF) 

o idle mode – t.b.d. (1A?) (BB-ON, PA-OFF) 

o transmit mode – t.b.d. (2.2A?) (BB-ON, PA-ON) 

 off mode to idle mode time – approx. 5 s  

 data/control interface – RS-232, Ethernet 

1.2. Implementation and Block Diagram 

The transmitter has been implemented using SDR technique. Most of the its functionality (physical 

layer) is implemented in FPGA, only the control block and layers above the physical layer are 

implemented in software. The transmitter module runs its own lightweight, Linux based, operating 

system.  

The transmitter functionality can be modified by software upgrades only – no hardware 

modifications are required. This can be done even in space (during the mission) providing that the 

uplink can be used for uploading the bitstream to the satellite. 

The block diagram of the transmitter module is presented in Fig. 1.1. Base-band signal processing and 

system management sections (see 2.1), low-power analog (RF) section (see 2.2) as well as power 

supply section (see 2.3) are located on the main PCB (PCB1). The RF power amplifier (see 2.3) is 

located on a separate PCB (PCB2), however the two PCBs form a single module covered with an 

aluminum radiator. For debugging and testing purposes the module can be connected in the lab to 

PCB3 hosting the auxiliary section (see 2.4), using zero insertion force ribbon connectors. 
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Fig. 1.1 Block diagram of the transmitter module 
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2. Module Electrical Design  

2.1. Base-band Signal Processing and System Management Sections 

(a.k.a Digital Section) 

An efficient SDR implementation of the transmitter requires application of an FPGA device. For this 

purpose a Xilinx ZYNQ System-on-Chip device, which combines dual-core ARM Cortex-A9 processor 

with the FPGA and a choice of interfaces was selected [2]. Most of the BB processing blocks are 

implemented in the FPGA, while the ARM processor is used for system control and management 

functions.  

The design of a system based on ZYNQ SoC from scratch is time consuming and error-prone, since 

the device requires many external components, e.g. Flash memory, SDRAM, interface drivers, clock 

and power supplies. Therefore an off-the-shelf, ready-to-use System-on-Module from Trenz 

Electronic GmbH is used in the transmitter module. 

The key features of the TE0715-30-1I3 SoM [3] are listed below: 

 Industrial-grade Xilinx Zynq SoC XC7Z030 

 Rugged for shock and high vibration 

 10/100/1000 Mbps Ethernet transceiver PHY 

 MAC address EEPROM 

 32-bit wide 1GB DDR3 SDRAM 

 32 MByte quad SPI Flash memory 

 Programmable clock generator 

 Transceiver clock (default 125 MHz) 

 Plug-on module with 2 × 100-pin and 1 × 60-pin high-speed hermaphroditic strips 

 132 FPGA I/Os (65 LVDS pairs possible) and 14 PS MIO available on B2B connectors 

 4 GTP/GTX (high-performance transceiver) lanes 

 GTP/GTX (high-performance transceiver) clock input 

 USB 2.0 high-speed ULPI transceiver 

 On-board high-efficiency DC-DC converters (1.0 V, 1.5 V, 1.8 V power rails) 

 System management CPLD 

 Temperature compensated RTC (real-time clock) 

 User LED 

 Evenly-spread supply pins for good signal integrity 

 50x40 mm module size 

The TE0715 block diagram is depicted in Fig. 2.1. 
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Fig. 2.1 TE0715 block diagram  

 

The module (daughter-board) uses 2x100 pins and 1x60 pins board-to-board connectors to access 

the following signals from the mother-board: 

 Bank 14, Bank 34, Bank 35 Zynq GPIOs 

 Bank 500, Bank 501 Zynq MIOs 

 Bank 112 Zynq MGTs 

 JTAG interface 

 System Controller I/O pins 

 SD card interface 

 ETH interface 

 USB interface 

2.2. RF Section 

(a.k.a Analog Section) 

The RF part of the transmitter is based on the Analog Devices integrated transceiver AD9364. It is a 

high performance, highly integrated radio frequency (RF) Agile Transceiver™ designed for use e.g. in 

3G and 4G base station applications. Its programmability and wideband capability make it ideal for a 

broad range of transceiver applications [4]. 

The key features of the AD9364 are listed below: 

 RF 1 × 1 transceiver with integrated 12-bit DACs and ADCs 
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 band: 70 MHz to 6.0 GHz 

 supports time division duplex (TDD) and frequency division duplex (FDD) operation 

 tunable channel bandwidth (BW): <200 kHz to 56 MHz 

 3-band receiver: 3 differential or 6 single-ended inputs 

 superior receiver sensitivity with a noise figure of <2.5 dB 

 Rx gain control - real-time monitor and control signals for manual gain Independent 

automatic gain control 

 2-band differential output transmitter  

 highly linear broadband transmitter, Tx EVM: ≤−40 dB Tx, noise: ≤−157 dBm/Hz noise floor, 

Tx monitor: ≥66 dB dynamic range with 1 dB accuracy 

 integrated fractional-N synthesizers: 2.4 Hz maximum local oscillator (LO) step size 

 multichip synchronization 

 CMOS/LVDS digital interface 

The AD9364 block diagram is depicted in Fig. 2.2. 

 

 

Fig. 2.2 AD9364 block diagram  

 

AD9364 is connected to the SoC via data and control lanes, including SPI interface for transceiver 

configuration and control. In the CBSR communication module only the transmit path of AD9364 

transceiver is used since the radio link is uni-directional (space to ground). However, the module is 

“reception-ready”, i.e. it can be easily modified to act as a receiver and implement bi-directional link. 

The RF signal from AD9364 is amplified by an Analog Devices HMC7357 integrated power amplifier to 

improve the link power budget [5]. HMC7357LP5GE is a three-stage GaAs pHEMT MMIC 2 watt 

power amplifier that operates between 5.5 and 8.5 GHz. The amplifier provides 29 dB of gain and 

+35 dBm of saturated output power at 34% PAE from a +8V supply. With an excellent output IP3 of 

+41.5 dBm, the HMC7357LP5GE is ideal for linear applications such as high capacity point-to-point 

and point-to-multi-point radios or VSAT/SATCOM applications demanding +35 dBm of efficient 

saturated output power. 
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2.3. Power Supply Section 

The CBSR communication module requires high-quality power supplies. The 8 V, 3.3 V, 1.8 V and 

1.3 V supplies are derived from a single 12 V power supply on-board the satellite. The power section 

uses the following devices: 

 LM5060 –  High-Side Protection Controller With Low Quiescent Current 

 TPS54623 –  Synchronous Step-Down SWIFT™ Converter With Light Load Efficiency and 

Hiccup Overcurrent Protection 

 ADP1755 – low dropout CMOS linear regulator 

 MIC37301 – low-dropout linear voltage regulator 

 TLV76750 – Precision Linear Voltage Regulator 

Some of the power rails can be controlled independently by the FPGA to turn-off the sections 

currently not in use. The transmitter module can be also put in the ‘off mode’ by an external ENABLE 

control signal. This helps to save the energy which is a scarce resource on-board the satellite. 

2.4. Interface Section 

The CBSR communication module is interfaced to other satellite sub-systems via two 52-pin PC-104 

stack-thru connectors. The following signal are available on the system connector: 

 +12V – 3 lines 

 GND – 11 lines 

 Ethernet interface – 4 lines 

 RS-232 interface – 2 lines (module control) 

 RS-232 interface – 2 lines (debug) 

 ENABLE – 1 line 

All control lines uses 3.3V single-ended signaling.  

2.5. Auxilary Section 

Due to the limited module size some of the peripherals necessary for system development and 

debugging have been moved to an external PCB which is removed when the module is installed 

on-board the satellite. The PCB is connected to the main module using three zero-insertion-force 

ribbon connectors.  

The PCB contain the following interfaces/connectors: 

 JTAG 

 SPI – a “mirror” of the SPI available on the system connector 

 CAN 

 ETH 

 2 x USB – emulation of ZYNQ SoC UART interfaces 

 SD – full size SD card slot 

 system reset button 

2.6. Schematics 

The detailed schematics of all sections can be found in Appendix A.  
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3. Module Mechanical Design 

The CBSR communication module uses 3 multi-layer PCBs, which are stacked together to form a 

single, easy-to-use module.  

The main PCB, which hosts the digital sections, part of the RF section (integrated transceiver) and 

power section is an 95.89x90.17 mm, 8-layer PCB, including 3 board-to-board connectors for the SoM 

as well as the PC-104 system connectors. The other part of the RF section (power amplifier) is located 

on a separate PCB, which can contain a low noise amplifier if a bi-directional version of the CBSR 

communication module is developed in the future. 

The module is covered with a block of aluminum for heat dissipation and EM shielding. The block 

holds the SMA connectors for attaching an antenna system. Patch-type transmit antenna has been 

selected which provides 6dBi gain to improve the link budget. 

Details of the mechanical construction (including PCBs) can be found in Appendix B as well as in 

external step and gerber files. 
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4. Transmitter implementation – PL part (FPGA) 

4.1. Radio frame structure 

The transmission is organized into radio frames depicted in Fig. 4.1. In consists of a preamble and 

tunable number of subframes. We can distinguish three parts in the preamble. The first part is the 

G_AMB used for AGC purposes. The second part is the T_AMB used for time synchronization. Finally, 

the F_AMB is used for frequency offset estimation. Each subframe in a frame corresponds to a single 

codeword coming from a turbo coder. Each subframe consists of 𝑛 partial codewords (PCWORD)  and 

𝑛 + 1 midambles used for phase offset estimation (P_AMB). Where 𝑛 is calculated based on the 

currently selected coding rate  

 

Fig. 4.1 Radio frame structure 

4.2. Simulink model 

The transmitter implementation in FPGA is prepared with the help of Matlab/Simulink and its HDL 

Coder. In Fig 4.2 the transmitter block inputs and outputs are presented, the relevant ones are 

described in Table 4.1.   

 

Fig. 4.2 Transmitter block 
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Table 4.1 Inputs and outputs of transmitter block 

Name Type Description 

input_words Input 32-bit words loaded from software via DMA 

words_valid Input Indication whether data in input_words line is valid 

ENABLE_REG  
Input/ 
Output 

Register that stores i.a. a value that enables/disables the 
transmitter. When its state is high, the signal can be 
transmitted, when it’s low the transmitter will stop 
sending samples its output (only after the internal data 
buffer has been emptied) 

RADIO_CONFIG_REG 
Input 

 

 
A register used to set: 

  the coding rate of the turbo coder. There are 7 coding 
rates settings from 0 to 6 (described in later sections) 

 the transmission mode. There are 4 modes available 
(values 0-3, described in later sections) 

 the roll-off factor of the shaping RRC filter. There are 2 
settings available i.e. 0 and 1. 

 the length of the frequency offset estimation part of 
the preamble. There are 3  possible values from 0 to 2 
(described in later sections) 

 

NUM_RF_SUBFRAMES_REG 
Input/ 
Output 

A line used to set the number of subframes in each radio 
frame.  

tx_out_I Output Transmitter in-phase component samples  

tx_out_Q Output Transmitter quadrature component samples 

valid_out Output Indication whether output samples are valid 

tx_load_req Output 
A line used to request data from the software. The high 
output indicates that data can be sent to the block. 

SUBFRAME_COUNT_REG Output The number of transmitted subframes 

 

In Fig. 4.3 the general structure of the transmitter is presented. Since the scheme is quite complex 

the main parts of the transmitter are shown and described in detail in the subsequent sections. 
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Fig. 4.3 Overview of the transmitter Simulink schematics 
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4.3. Data loading and fake frame generation 

The first part of the transmitter is shown in Fig. 4.4. It is responsible for requesting data from 

software or the internal data source. It also prepares the data for the subsequent subsystems i.e. it 

converts received 32-bit words into bits accepted by scrambling and coding subsystems described in 

subsection 4.2.1.  

 

Fig. 4.4 Data loading and fake frame generation part of transmitter schematics 

 

In the proposed transmitter three modes of data transmission are foreseen: 

1. Transmission of channel coded data from software 

2. Transmission of channel coded data from the internal data generator 

3. Transmission of repeatable uncoded data from the internal data generator 

 

The realization of all of the modes is performed with the help of blocks 1 to 4 shown in Fig. 4.4.  

Block number 1 (Fig. 4.5) is a Matlab function that implements a Finite State Machine (FSM) 

responsible for requesting data from software or an internal data source. The block has 6 inputs and 

4 outputs which are described in Table 4.2.  

1 

2 

4 

3 
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Fig. 4.5 Finite state machine for requesting data from software or internal data generator 

 

Table 4.2 Inputs and outputs of RequestData block 

Name Type Description 

data_valid Input Indication whether there is valid data  

frame_processing_ready Input 
Indication whether the channel coder is ready to accept 

new data 

fifo_ready Input 
Indication whether data symbols buffer is ready to accept 

new data 

coded_en Input 
Indication whether coded data transmission mode is 

selected 

inject_fake_check Input 
Flag used to trigger the use of fake (internally generated) 

data until new data from software arrives   

tx_enable Input Flag indicating whether the transmission is still enabled 

tx_load_req Output 
Signal responsible for requesting new data, either from 

software or internal data generator. The data is requested 
until we receive the required number of words i.e. 187 

SH_enable Output Signal used to hold current data source selection 

force_internal_data Output 
Signal used to override the software data source in case 

there is no valid data coming from the software 

ostate Output 
Indication of the current state of the FSM (used for 

debugging) 

 

 

Block number 2 is the internal data generator and its structure is depicted in Fig. 4.6 it uses a PN 

sequence generator with the following polynomial 𝑥20 + 𝑥17 + 1. The data output of the generator 

is tailored to fit the 32-bit words coming from the software. Each time there is a high RequestIn signal 

a new word is generated that can be fed to the block responsible for unpacking words to bits (block 

number 3). Block number 3, depending on transmission mode selection, can accept either data 

coming from software or internal data as described above. The structure of the data unpacking block 

is depicted in Fig. 4.7 It uses a simple state machine responsible for reading 32-bit words from the 

FIFO queue in cycles of 32 samples. The word is then converted to a stream of bits that can be fed to 

the next blocks in the processing chain.   
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Fig. 4.6 Internal data generator 

 

 

 

Fig. 4.7 Data unpacking subsystem 

 

The final block (number 4, Fig. 4.8) is a controller used to generate bits for the uncoded 

transmission mode. It has 4 inputs and 3 outputs which are described in Table 4.3 

 

 

 

Fig. 4.8 Controller for handling fake uncoded data 
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Table 4.3 Inputs and outputs of fakeDataController block 

Name Type Description 

tx_enable Input Flag indicating whether the transmission is still enabled 

num_phase_midamble Input 
Number of midambles used for phase offset estimation used in 

each subframe 

num_subframes Input Number of subframes in radio frame 

fifo_ready Input 
Indication whether data symbols buffer is ready to accept new 

data 

inc_subframe_cnt Output Signal used to increment a subframe counter of the transmitter 

data_en Output 
Signal used for enabling reading fake uncoded bits from a 

lookup table 

sample_cri Output 
Signal used to sample the state of the cri_sel input of the 

transmitter in uncoded mode  of transmission 

 

The fakeDataController and RequestData blocks can be operational only when the TxEnable signal is 

high. The tx_enable signal coming to the transmitter block can be controlled from software that 

doesn’t know the internal state of the transmitter. If the software changed the state of the tx_enable 

line when the transmitter is still processing data it could corrupt the data and the structure of the 

frames and subframes for the next transmission session. To avoid this problem a simple function was 

created which block is depicted in Fig. 4.9. Its task is to sample the state of the tx_enable of the 

transmitter only when the subframe counter outputs the value 0, meaning this is the beginning of 

the radio frame.  

 

 

 

Fig. 4.9 Controller of the tx_enable state used for requesting data 

 

 

4.3.1. Data scrambling, CRC insertion and channel coding 

The second part of the transmitter (blocks 1 and 2 shown in Fig. 4.10 ) is responsible for preparing 

the data for the OQPSK modulator firstly by scrambling the incoming bits and secondly by adding CRC 

and channel coding it with a Turbo coder.  
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Fig. 4.10 Data scrambling and coding part of transmitter schematics 

 

The scrambling block (denoted by 1 in Fig 4.10) is using a PN sequence generator to modify the data 

bits fed to it by performing an XOR operation as shown in Fig. 4.11. The PN sequence generator is 

using the same polynomial as the generator used in internal data source (i.e. 𝑥20 + 𝑥17 + 1) but they 

are independent of each other. The difference here is that we use only a single bit from the 

generated sequence instead of 32 bits in the case of the internal data source generator.  

 

 

Fig. 4.11 Data scrambling subsystem 

 

The CRC and coding block is depicted in Fig. 4.12. It consists of two main parts. First, there is a CRC 

calculation block that adds a 32-bit CRC to the subframe data, extending its length to 6016 bits 

accepted by the turbo coder. The CRC sequence is generated using the following polynomial: 

 

𝑥32 + 𝑥31 + 𝑥24 + 𝑥22 + 𝑥16 + 𝑥14 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥3 + 𝑥 + 1 
 

The output of the CRC calculation block is fed to one of two turbo coders in an alternating manner. 

We use two coders due to the processing delay of the coding process which could cause that the 

data supply for the subframe assembly is not sufficient. In order to avoid overlapping of output data, 

1 2 



Rafał Krenz, ed. Transmitter Module CS.S2.SR 

Version 1.0 10.03.2022 20 

a dedicated control mechanism has been implemented. The output codeword length varies with 

different coding rate values, possible lengths are shown in Table 4.4. 

 

 

Fig. 4.12 CRC and channel coding subsystem 

 

Table 4.4 CRI settings and coder output lengths 

CRI value Coding rate Codeword length 

0 0.91 6600 

1 0.83 7260 

2 0.76 7920 

3 0.57 10560 

4 0.38 15840 

5 0.285 21120 

6 0.19 31680 

 

4.3.2. OQPSK modulation 

The bits coming from the coding block are grouped to formed bit pairs which are mapped to OQPSK 

samples in the OQPSK modulation block denoted with 1 in Fig. 4.13. Its internal structure is shown in 

Fig. 4.14. Its task is to convert incoming bit pairs to OQPSK symbols and upsample it by the factor of 

2. Each bit from the pair is upsampled. The bit in the imaginary branch of the symbol is delayed by 

half the initial sampling rate. Combining together the delayed and not delayed branches into a single 

complex sample produces an OQPSK symbol.  
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Fig. 4.13 OQPSK modulation part of the transmitter schematics 

 

 

Fig. 4.14 OQPSK modulation 

 

4.3.3. Radio frame creation  

Each sample produced by the data preparation part of the transmitter descriped above is stored in a 

FIFO queue (block number 1 depicted in Fig. 4.15) which is controlled by a FSM implemented in the 

TXStatus block (number 2 in Fig. 4.15). The TXStatus is responsible for the correct assembly of 

subframes and radio frames. It has 6 inputs and 8 outputs as depicted in Fig. 4.16, the description of 

the input/output lines is given in Table 4.5 

 

 

 

 

 

 

 

 

 

 

1 
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Fig. 4.15 Radio frame creation part of the transmitter schematics 

 

 

Fig. 4.16 Finite state machine used for assembling radio frames 

 

Table 4.5 Inputs and outputs of TXStatus block 

Name Type Description 

tx_enable Input Indication whether the transmission is still enabled in software 

tx_end Input Flag indicating that the high level of tx_enable signal has ended 

data_available Input 
Indication whether OQPSK symbols are present in the symbol 

buffer 

freq_midamble_len Input 

Length of the part of a preamble used in frequency offset 
estimation. There are 3 values possible: 544,1056 and 2080 
(they are oversampled by 2)depending on the F_AMB_sel 

setting 

num_phase_midamble Input 

A number of midambles used for phase offset estimation used 
in each subframe. The number of midambles is calculated based 

on coding rate and partial codeword length (330 OQPSK 
symbols) 

2 

1 

3 

4 
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num_subframes Input Number of subframes in the radio frame 

tx_select Output 
Signal used to select appropriate part of the radio frame fed 

into the shaping filter 

preamble_en Output 

Signal used to read initial preamble symbols from a lookup 
table. The length of the preamble is 768 symbols (they are 

oversampled by 2). The preamble consists of two parts. The First 
256 samples are used for AGC purposes (G_AMB) and the 
remaining 512 symbols are used for time synchronization 

(T_AMB) 

data_en Output Signal used to read OQPSK symbols from FIFO queue 

freq_midamble_en Output 
Signal used to read from a lookup table preamble symbols used 

for frequency offset estimation. The length of F_AMB is 
dependent on the freq_midamble_len.  

phase_midamble_en Output 
Signal used to read from a lookup table midamble symbols used 
for phase offset estimation. The length of the phase midamble 

is 166 (oversampled by 2) 

pop_cri Output Signal used to get the currently used CRI value 

inc_subframe_cnt Output A line used for counting transmitted subframes 

eot_flag_out Output Signal used to generate an EOT frame 

ostate Output Indication of the current state of the FSM (used for debugging) 

 

Preamble and midambles are read from lookup tables stored in memory. In Fig. 4.17 a preamble 

generator is presented. Its operation is rather straightforward i.e. the enable signal on the input port 

enables the counter which generates an index from which we read the value from the lookup table 

for the output. The generators for the frequency offset estimation part of the preamble and 

midamble generator are identical in structure but differ in contents of the lookup table.  The phase 

midamble apart from being used for phase offset estimation is used to distinguish the coding rate in 

the receiver. Each coding rate setting has its own form of midamble that is created by cyclically 

shifting base Zadoff-Chu sequence used for phase estimation purposes.  

 

 

Fig. 4.17 Preamble generator subsystem 

Apart from the 3 modes of transmission described in section 4.1.1, there is a fourth mode in which 

the transmitter will continuously transmit preambles (G_AMB with 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒𝑠 

repeats of T_AMB). To control this mode of transmission FSM depicted in Fig. 4.18 was implemented. 

Its inputs and outputs are described in Table 4.6  
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Fig. 4.18 Finite state machine used for assembling radio frames consisting of repeating preambles 

 

Table 4.6 Inputs and outputs of TXStatusContTAMB block 

Name Type Description 

tx_enable Input Indication whether the transmission is still enabled in software 

tx_end Input Flag indicating that the high level of tx_enable signal has ended 

num_repeats Input 
The number of T_AMB preamble repeats, set by the num_subframes 

value 

tx_select Output 
Signal used to select appropriate part of the radio frame fed into the 

shaping filter 

g_amb_en Output 
Signal used to read G_AMB preamble symbols from a lookup table. 
The length of G_AMB is 256 symbols (they are oversampled by 2).  

t_amb_en Output 
Signal used to read T_AMB preamble symbols from a lookup table. 
The length of T_AMB is 512 symbols (they are oversampled by 2).  

 

4.3.4. Pulse shaping and transmitter output 

The final step in the processing chain is pulse shaping and data type conversion of the samples to 

unsigned integer format accepted by the DAC depicted in Fig. 4.19. The pulse shaping is performed 

with a tunable root raised cosine filter. The tunable parameter of the filter is its roll-off factor 𝛼 

which can be set by the shaping_filter_alpha_sel input of the transmitter. There are two possible 

values of the 𝛼 parameters i.e. 0.22 when the shaping_filter_alpha_sel inputs value is 1 and 0.35 

otherwise. The input of the pulse shaping filter are the samples of the radio frames assembled in 

previous steps of the processing chain. 

 

 

Fig. 4.19 Pulse shaping and output part of the transmitter  
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4.4. Custom-made IP core 

4.5. Introduction 

The FPGA-based signal processing routine, created with the aid of MATLAB HDL Coder, is 

encapsulated into a user-developed Vivado IP core. To incorporate a transmitter IP core into a Vivado 

block diagram, a Matlab HDL workflow coder is used. The workflow operates according to a given so-

called reference design, which specifies the Vivado block diagram, the way in which the custom-

made IP core is merged with it, and the board pin assignment (constraint file). The reference designs 

have a form of TCL scripts. 

In the current project, a reference design by Analog Devices, dedicated to PicoZED (adrv9361z7035) 

board, is used as a baseline and adopted by the project researchers to meet the requirements of the 

TE0715 SoM, manufactured by Trenz Electronic.  

The original reference design by Analog Devices seems to be most accurate in the cases where the IQ 

samples (for 2 transmit channels) are generated by the PS, and the PL is used, mainly, for interfacing 

AD9361. Signal processing in PL is an option (the user-specified IP core can be by-passed in some 

cases). There are four 16-bit input lines, and the data flow control is of a back-pressure type: the 

AD9361 transceiver orders samples from the PL, and the request is forwarded to the PS.  

In the current project, the data transferred from PS to PL via DMA have the meaning of binary 

vectors instead of complex IQ samples; the data rate on the PS<>PL interface is significantly smaller 

than the symbol rate on the SoC<>AD9364 interface as there is nothing else but PL responsible for 

the physical-layer signal processing (scrambling, channel coding, interleaving, modulation, pulse 

shaping, etc.). As a consequence, it is more accurate to consider only one wide data line on the 

PS<>PL interface. Since it is not guaranteed that the PS is able to deliver new data vectors on the PL’s 

request, it is necessary to wire a “data valid” line along with the data line.  

4.5.1. Reference design customization 

With the aim to overcome the disadvantages of the original reference design, the datapath is 

significantly modified. Four 16-bit data lines have been replaced with one 32-bit data line. 

Consequently, data streams are not interleaved anymore (interleaving required troublesome 

synchronization between the streams), so the blocks, responsible for stream interleaving and 

deinterleaving are removed. The data line is accompanied by a strobe line, missing in the original 

reference design by Analog Devices. The utility_buffer IP, originally placed between DMA interface 

and FIFO at the clock domains’ border, has been removed. It was devoted to alleviate the problem of 

asynchronous type of data feed through DMA interface, but it has appeared to cause highly 

undesired random delays. 

The reference design by Analog Devices features more IP cores useless from the perspective of the 

current project. In particular, it refers to the IP cores playing the role of HDMI, SPDIF, and I2S 

interfaces; their removal brings reasonable FPGA resources savings.  

Some minor changes, shown in Fig. 4.20, have been made in the settings of axi_ad9361 IP core, 

responsible for transferring FPGA-generated IQ samples of a passband signal to AD9364 transceiver. 
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Fig. 4.20 Configuration window of axi_ad9361 IP core 

 

In detail, 1R1T mode is chosen to eliminate redundant support for two transmit channels (AD9364 

features only one transmit channel). Additionally, TDD disable option is checked, since the AD9364 is 

forced to operate permanently in Tx mode by an SPI write to AD9364 registers instead of periodic 

Tx/Rx toggling, controlled via FPGA pins. Thanks to that, neither 24-bit TDD counter nor a few 

reference registers of the same size are implemented in FPGA. The rest of configuration fields of 

axi_ad9361 IP core take the default values. DDS feature is enabled for testing purposes.  

Another improvement has been made in the domain of custom-made IP core clocking. In the original 

reference design, the user’s IP core is clocked by the AD9364 clock divided by 2 (or by 4 in the case of 

2 transmit streams – not applicable to the current design). It limits the system capability of serial 

data processing, since half of the clock cycles are not usable. Instead, the custom-made IP core is 

now clocked with the original AD9364 clock (rx_clk), distributed throughout the FPGA device directly 

from a respective BUFG element, as shown in Fig. 4.21. 

The decision to eliminate a separate clock domain for custom-made IP core results with a simpler 

clock cross-domain management: there is only one clock-domain crossing in the data path, handled 

safely by means of a FIFO in axi_ad9361_dac_dma IP core. To transfer commands and status 

messages data between the time domains (fpga_clk0 and rx_clk) through AXI4-Lite, a 3-stage 

synchronizer is placed in the axi_cpu_interconnect IP core. Together with AXI protocol handshaking, 

it guarantees safe transfers. The principles of operation of axi_cpu_interconnect is explained 

according to Fig. 4.22. The input AXI bus (S00_AXI) interfaces Zynq PS – it is clocked by the fabric 

fpga_clk0 clock. The interconnect IP core is responsible for dispatching the commands to numerous 

IP cores, featuring AXI4 interface, via the output AXI buses: M00_AXI … M04_AXI. All such IP cores 

except for the custom-made data processing IP core are clocked by the same fpga_clk0 clock. In such 

cases, the couplers visible in Fig. 4.22 are transparent (as explicitly shown for M03_AXI). For 

M04_AXI, connected with the IP core clocked by rx_clk, the auto_cc sub-block is inserted. It contains 

the abovementioned 3-stage synchronizer. 
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Fig. 4.21 AD9364 clock distribution throughout the FPGA device 

 

 

 
 

Fig. 4.22 Internal structure of axi_cpu_interconnect 

 

Taking into account asynchronous data transfer between the clock domains (for both data path and 

the control/status AXI channel), it is desired to constrain intra-clock paths on FPGA as false paths, 

thereby instructing the Vivado placer to ignore them; it helps overcome timing-related issues when 
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routing. Fig. 4.23 proves that the paths between clock domains: fpga_clk0 and rx_clk are successfully 

set as false paths in Vivado.  

 

 
 

Fig. 4.23 Clock interaction report for the implemented design in Vivado 

 

Not only is the MATLAB HDL workflow responsible for generating appropriate interfaces of the 

custom-made IP core and incorporating it into the reference design, but also for attaching 

extraordinary constraint files to the project. The constraint files contain the settings related to the 

hardware pinout, clock frequency, false paths, etc. The pinout for Trenz board differs from PicoZED 

pinout in terms of voltage standard and exact position of SoC<>AD9364 connectors. For that reason, 

the constraint files have been updated to meet the project requirements.   

4.5.2.  The use of Simulink HDL Workflow Advisor  

For ease of use the customized reference design targeting Vivado 2018.2 has been stored and 

integrated with the HDL Workflow of Matlab 2019a under the name of TE0715byMK – it should be 

chosen as the Target platform in Step 1.1 of the HDL Workflow Advisor, as shown in Fig. 4.24. Step 

1.4, shown in Fig. 4.25, brings the possibility to connect the inputs and outputs of the developed 

Simulink block diagram to appropriate reference design wires (aka target platform interfaces). The 

meaning of specific target platform interfaces is explained in Table 4.7. It does not include the 

Simulink ports attached to the AXI4-Lite interface, used to send control commands from PS to PL and 

read diagnostic messages in the opposite direction.  

After passing checks in Steps 2.1-2.4, the HDL code for the custom-made IP core is generated in 

Step 3.2 of HDL Workflow Advisor. The generated IP core is deposited in a folder specified by the 

user and can be manually placed into any Vivado block diagram. However, the customized reference 

design TE0715byMK features the possibility to automatically integrate the IP core with the block 

diagram. It can be done in Step 4.1 of HDL Workflow Advisor. If the process ends successfully, a link 

to a new-created Vivado project appears in a log window of HDL Workflow Advisor, as shown in 

Fig. 4.26). Clicking the link launches Vivado and the project opens.  It is not suggested to run 

remaining steps of HDL Workflow Advisor, as they are accurate only for the case when FPGA 

processing is controlled by Simulink (a kind of hardware-software co-simulation).  
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Fig. 4.24 Step 1.1 of HDL Workflow Advisor 

 

 

 

 
 

Fig. 4.25 Step 1.4 of HDL Workflow Advisor 
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Table 4.7 Target platform interfaces in HDL Workflow Advisor 

Name Type Mating pin on Simulink 
diagram 

Description 

DataIn Input inputWords 
32-bit data vectors send from PS 
via DMA 

ValidIn Input wordsValidIn Strobe line for input data 

SampleRequestIn Input (not used) 

This line is periodically strobed by 
axi_ad9361 IP core to request 
subsequent IQ samples; for 1R1T 
mode, a pulse appears every 2nd 
AD9364 clock cycle  

SampleReOut 
SampleImOut 

Output 
Tx_out_I 
Tx_out_Q 

16-bit IQ samples of the passband 
signal, represented in 2’s 
complement format; actually, 4 
least significant bits are 
unimportant since AD9364 is 
equipped with a 12-bit DAC 

DataRequestOut Output TxLoadReq 
Request for a new data vector 
destined for the FIFO at the clock-
domain crossing  

 

 

 
 

Fig. 4.26 Result of successful execution of the last step of HDL Workflow Advisor 

4.5.3. Vivado project details 

The complete block design of Vivado project is shown in Fig. 4.27, while a closeup on the custom-

made IP core is presented in Fig. 4.28. One can easily recognize the target platform interfaces of the 

IP core, described in Table 4.7. There are some additional lines: AXI4-Lite bus (to receive control 

commands from PS and send status messages), as well as reset and clock lines (separate for AXI bus 

sub-module and the rest of the IP core). Since the clock-domain crossing is located in 
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axi_cpu_interconnent, the whole custom-made IP core clocking belongs to a single clock domain of 

rx_clk, originated from l_clk pin of axi_ad9361 block.  The IP core reset line is conjugated with 

PS reset by util_ad9361_divclk_reset block, responsible for transferring the PS-generated reset to 

rx_clk clock domain. Note that the IP core must be additionally resetted by an AXI write after AD9364 

has finished all callibrations. Failure to do so might lead to unpredictable IP core operation and 

metastability.  

The design is synthesized with the clock constraints specified according to the most demanding 

20 MHz bandwidth transmission mode. The mode choice is managed by appropriate frequency 

setting of rx_clk on AD9364 and impacts the speed of data passing through the whole data path in 

the rx_clk domain. 

 

 

Fig. 4.28 Custom-made IP core 
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Fig. 4.27 Vivado block design 
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5. Transmitter Implementation – PS part (software) 

5.1. TX vs RX – disambiguation 

Processing System part is run on two boards, mainly: 

 Trenz board (board version: TE0715-04-30-1I3), 

 MITX (aka MiniITX board with Z100 FPGA, board version: Mini-ITX-7Z-ASY-G). 

The most recent HDL version Analog Devices’ HDL that supports AVNET’s MiniITX box is hdl_2017_r1, 

while HDL version that is compatible with Trenz board is hdl_2018_r2. A chain of dependencies 

caused by such a seemingly unimportant version difference results in two different Linux O/S 

versions that run on those boards. It is of an uttermost importance to note that such a choice of O/S 

version was dictated by technical arguments, not by dogmatic or opinionated ones. Details are 

shown in the table below. 

 

Side Board HDL O/S Vivado Matlab 

TX Trenz TE0715-04-30-1I3 hdl_2018_r2 2018_R2 2018.2 2019a 

RX Mini-ITX-7Z-ASY-G hdl_2017_r1 2017_R1 2016.4 2017b 
 

5.2. Operating System 

Transmitter module is based on Trenz board TE0715-04-30-1I3, a consequence of which is using 

Analog Devices’ Linux version 2018_R2 (kernel 4.14.0). [Note, however, that due to the 

unavailability of the final board at the time of preparation of this document, the chosen version of 

O/S was tested only on Trenz’s motherboard TE0705-04. As a result, this O/S version is not yet 

decided to be final.] 

5.2.1. Cross-compiling Tools 

Linux kernel together with all supporting libraries and tools were built with GCC 11.2.0. [As of the 

preparation time of this document, the final version of GCC is practically frozen, although it still might 

be changed to a different one if necessary.] 

5.2.2. Shell 

O/S is interfaced via ash (Almquist shell). 

5.2.3. Kernel Configuration 

Kernel was configured using a customized Xilinx configuration provided by Analog Devices Inc. in the 

source tree of Linux kernel under the name [xilinx_zynq_defconfig]. The customization 

involved additional configuration of: 

 DMA Engines (with Xilinx DMA Engines), 

 AXI DMAC, 

 AD9361, 

 AD9517, and 
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 AXI DDS (Digital Direct Synthesizer). 

5.2.4. FPGA Driver and Kernel Modules 

FPGA Driver is loaded as a kernel module during the system boot-up. Detailed documentation of the 

driver attributes can be found in the auto generated documentation file [10]. Delivered as an 

attachment to this document. [Note, however, that eventual further changes to the implementation 

of the IP Core may require corresponding updates to the driver documentation]. 

5.2.4.1. Driver Attributes Description 

As mentioned previously, the documentation describing driver attributes is automatically generated. 

A similar approach is used to create the driver code (obviously, only the most redundant parts). This 

is achieved by describing driver’s attributed in a YAML file, which in turn is used to generate driver’s 

and Latex’s code for the driver itself and its documentation, respectively. Such an approach was used 

in order to easily keep in sync changes made to the driver and its documentation. An example 

entrance that describes the hardware_version attribute is shown in the listing below. 

 

# Snip... 

- name: hardware_version 

  generated_driver_code: 

[offsets,driver_entrances,driver_attributes_short,help_messages] 

  type: __u32 

  rd_offset: 0x04■■ 

  wr_offset: null 

  rd_buffer_size: 16 

  wr_buffer_size: 10 

  rd_function: scnprintf 

  wr_function: kstrtou32 

  mask_spec: null 

  trx_side: [tx,rx] 

  help_msg: |- 

      None 

  description: |- 

      Version of bit-stream hardcoded in the hardware. 

      It is not possible to write into this register! 

  hardware_name: DEV_ID 

  available_values_hardware: null 

# Snip... 

 

5.2.4.2. Kernel Modules Loading 

Despite most of the kernel modules being compiled directly into the kernel itself, the FPGA driver is 

not. Such an approach allows eventual changes to the driver without the need of recompiling the 

whole kernel. The script used to load / unload kernel modules (which is located in 

[/etc/rc.d/init.d/modules_conf]) is presented below. Note that contrary to most 

arguments that such scripts accept, this particular one also accept arguments: load, unload and 

reload (which corresponds to standard: start, stop and restart, respectively). Such an 

approach allows using semantic that is closer to module loading / unloading. The configuration file 

that drives the modules loading is located in [/etc/modules.d/modules.conf] and it is 

discussed in the next section. 

 

#!/bin/ash 



Rafał Krenz, ed. Transmitter Module CS.S2.SR 

Version 1.0 10.03.2022 35 

# 

# modules auto loading/unloading 

# 

 

. /etc/rc.d/init.d/functions 

 

modules_config_file="/etc/modules.d/modules.conf" 

 

modules_load_unload() { 

    local modprobe_param="${1}" 

    local msg="loading" 

    [ "${modprobe_param}" == "-r" ] && msg="unloading"; 

 

 

    echo -n "${0}: Checking whether ${modules_config_file} exists and is valid: " 

    [ -r ${modules_config_file} ] && grep -qv "^($|#)" ${modules_config_file} 

    local ERR=$? 

    [ 0 == ${ERR} ] && true || false 

    check_status 

    [ 0 == ${ERR} ] || { echo "${0} Not ${msg} modules! Problems with 

${modules_config_file} file!"; exit 0; } 

 

    sleep 0.1 

 

    while read module args; do 

        # Skipping blank or commented-out lines" 

        case "${module}" in 

            ""|"#"*) continue;; 

        esac 

 

        modprobe ${modprobe_param} ${module} ${args} 

        ERR=$? 

        echo -n "${0}: ${msg} ${module} with params: `[ "" != "${args}" ] && echo 

${args} || echo -*NONE*-`: " 

        [ 0 == ${ERR} ] && true || false 

        check_status 

        sleep 0.1 

 

    done < ${modules_config_file} 

 

} 

 

case "$1" in 

    start|load) 

        modules_load_unload "" 

    ;; 

 

    unload|stop) 

        modules_load_unload "-r" 

    ;; 

    reload|restart) 

        $0 stop 

 

        sleep 1 

 

        $0 start 

    ;; 

    *) 

        echo "Usage: ${0} {start|stop|restart|load|unload|reload}" 

        exit 1 

    ;; 

esac 

 

exit 0 
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5.2.4.2.1. Modules configuration file 

The aforementioned modules configuration file (which is located in 

[/etc/modules.d/modules.conf]) allows loading arbitrary modules (not only the FPGA 

driver). The example script is shown in the listing below. Besides specifying modules to load, it also 

allows specifying module’s parameter, e.g., in the listing below module fpgatrx is loaded with 

parameter DEBUG set to 1. Kernel object files that contain the modules’ code are located in 

[/lib/modules/$(uname -r)/kernel/drivers/], where [$(uname –r)] is release of 

the running kernel, in our case it is: 4.14.0-xilinx-ge77ffb40e9a0-dirty. [But as already 

mentioned this release might still be subject to an eventual change.] 

 

# File: /etc/modules.d/modules.conf 

# 

# In order to load module at the system boot-up, add: 

# 

# module_name module_param_1 module_param_2 

# 

 

fpgatrx DEBUG=1 

 

5.2.5. Libraries and Tools 

O/S is delivered with tools and libraries described in the table below. [Please note that the final 

versions of some of these artifacts may be changed if deemed necessary.] 

 

Tools / Library Version TX Version RX Description 

Binutils 2.27  Set of tools and libraries for building binary 
executable(s), e.g., liker, assembler, etc. All 
build for ARM Cortex A9 processor, but without 
dubious optimisation flags. 

Busybox 1.24.2  Swiss-army-knife toolbox with standard set of 
tools for working in a Linux environment. (All 
tools are delivered as via symbolic links to one 
executable.) 

IANA-ETC 2.30 
patched 

 Data / information package for network 
protocols and services. 

MPC 1.0.3  Arbitrary precision floating-point complex 
arithmetic library. (GCC dependency.) 

MPFR 3.1.4  Arbitrary precision floating-point library. (GCC 
dependency.) 

musl-libc 1.1.19  Standard C library for embedded systems. 

zlib 1.2.11  Data compression library. 

netplug 1.2.9.2  GNU/Linux daemon for network services. 

Dropbear 2018.76  Lightweight implementation of SSH library. 

LibXML2 2.9.8  XML parsing library, implemented in C. libiio 
dependency. 

Boost 1.67  Boost – an umbrella of C++ utility libraries. Most 
of them are header-only libraries. Only three 
are installed on the final system: 
libboost_atomic, libboost_chrono, 
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libboost_system. 

tree 1.7.0 1.7.0 Command line recursive directory viewer / 
explorer. 

libiio 0.14  Hardware abstraction layer library via IIO 
module (Industrial Input / Output) for 
GNU/Linux. Mainly used to  

gtest 1.11.0 1.11.0 Unit test library. 

gflags 2.2.1  Command line parsing library. 

googlebenchmark 1.6.1 1.6.1 Benchmarking library 

{fmt} 8.1.1 8.1.1 Text formatting library 

iproute2 ss190197  Network support tools. 
 

5.2.6. Device Tree and Node Configuration 

In order to easily distinguish between various systems configurations we add to the device tree file 

parameter describing specific configuration of the board. An excerpt from a device tree is shown 

below. 

 

/{ 

    wzldevicemode { 

        mode = "trenz"; 

    }; 

}; 

 

 

On the running system, current [wzldevicemode] (WZL here stands for Wireless ZYNQ Lab) can be 

read form [/sys/firmware/devicetree/base/wzldevicemode/mode] file. In the case 

the node describing the current configuration changes, the file with the fixed name that contains the 

actual location of the current configuration is located in [/etc/radio/wzl-dev-mode-file-

location]. Such an approach ensures a single reference point to the actual location of the the file 

describing the device mode. 

Definition of the FPGA implementation of the custom made IP Core is also provided in the device tree 

(in the FPGA/amba_pl section). The entrance in the device tree for SimpleQPSK IP Core is shown 

below. 

 

/{ 

    amba_pl: amba_pl { 

        #address-cells = <1>; 

        #size-cells = <1>; 

        compatible = "simple-bus"; 

        ranges ; 

        SimpleQPSK_ip_0: SimpleQPSK_ip@43c00000 { 

            compatible = "xlnx,SimpleQPSK-ip-1.1"; 

            reg = <0x43c00000 0x10000>; 

        }; 

        // ... 

    }; 

}; 
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5.2.7. RF Configuration 

RF configuration files reside in the [/etc/radio] directory on the primary/root partition. An 

example listing of subset of its directories is shown below. 

 

/etc/radio/filters 

├── cubesat-filter-v0001.ftr 

├── cubesat-filter-v0002-1R1T-mode.ftr 

├── cubesat-filter-v0003-61dot44.ftr 

├── cubesat-filter-v0004-30dot72.ftr 

├── cubesat-filter-v0005-7dot68-pll-ad9364.ftr 

├── cubesat-filter-v0006-15dot36-pll-ad9364.ftr 

└── lte_5MHz.ftr 

 

/etc/radio/current/ 

├── ad9361-config.gflags 

├── config-dispatcher.gflags 

├── session-plan.yaml 

└── session-scheduler-config.gflags 

 

 

As can be deduced from the listing above, definition of FIR filters is in [/etc/radio/filters] 

directory. An example FIR filter definition file is show below. Its format is self-explanatory. 

 

$ head -12 /etc/radio/filters/lte_5MHz.ftr  

# Generated with AD9361 Filter Design Wizard 16.1.3 

# MATLAB 9.2.0.538062 (R2017a), 25-May-2018 16:55:22 

# Inputs: 

# Data Sample Frequency = 7680000 Hz 

TX 3 GAIN 0 INT 2 

RX 3 GAIN -6 DEC 2 

RTX 983040000 122880000 61440000 30720000 15360000 7680000 

RRX 983040000 122880000 61440000 30720000 15360000 7680000 

BWTX 4372840 

BWRX 4694670 

-5,-10 

0,-21 

... 
 

 

File [lte_5MHz.ftr] is used only for demonstration without disclosing actual details of the FIR 

filters used in the real system (mainly number and values of consecutive filter taps). 

 

5.2.8. Application Configuration Files 

Besides FIR filters configuration files [/etc/radio] directory also contains 

 

/etc/radio/current/ 

├── ad9361-config.gflags 

├── config-dispatcher.gflags 

├── session-plan.yaml 

└── session-scheduler-config.gflags 
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These files contain configurations of the custom applications and are described more thoroughly 

further in the document. The [/etc/radio/current] directory is in fact a soft link to the actual 

directory that contains configuration for a particular transmission side (TX or RX). 

5.2.9. Pre-O/S Components and Boot Sequence / Order 

Boot sequence on ARM-based hardware is divided into separate stages. Initially the FSBL (First Stage 

Boot Loader) prepares hardware, initializes CPUs and starts SSBL (Second Stage Boot Loader), which 

in our case is U-boot. Then SSBL/U-Boot decompresses the Linux kernel image and loads it together 

with a device tree describing the hardware and peripherals into memory. Next, the control is passed 

to the kernel, which boots itself, launches [/sbin/init] program that finalizes the Linux booting-

up and starts services and applications required for ensuring the whole system is in an operational 

state. 

5.2.9.1. FSBL 

Beside standard initialization, Xilinx’s FSBL allows configuring additional hardware via FSBL hooks. For 

example, patch provided by Trenz allows configuring SI5338 module. 

In the next three sections we show logs from FSBL, U-Boot and loading Linux kernel. These logs can 

be used as a reference for adjusting and / or fine-tuning different versions of the mentioned software 

components. They should be treated more as a guidance that a gold-standard when preparing 

custom solutions. 

5.2.9.1.1. FSBL Boot Logs 

FSBL loading logs are presented below. The manifest info section describes internals used to create a 

final [BOOT.BIN] file, it is not a necessary part and it is used solely for simplifying identification of 

the loaded bitstream. 

MANIFEST INFO: 

----------------------- 

HDF FILE:                 sr-cubesat-trenz-tx-v0011.hdf 

HDF GIT SHA:              8b041aee83724fadcd64867d266cabf8cdbfb005 

IP CORE REPORT PATH:      

d:/TrenzPrebuild/system/ip_lib/SimpleQPSK_ip_v1_1/doc/doc_arch_axi4_lite.jpg 

ZYNQ XTOOLCHAIN GIT SHA:  bad57fe9919f23f83c19aeeb71f0a3bb37e2e70a 

FSBL build date:          Tue, 14 Dec 2021 17:12:32 +0100 

----------------------- 

Xilinx Zynq First Stage Boot Loader (TE + PUT/TGM modified)  

Release 2018.2  Dec 14 2021-17:12:50 

 

 

5.2.9.2. SSBL / U-boot 

U-boot logs are only for the reference. 

U-Boot 2018.01 (Oct 11 2021 - 16:38:10 +0200) Xilinx Zynq ZC702 

 

Board: Xilinx Zynq 

Silicon: v3.1 

I2C:   ready 

DRAM:  ECC disabled 1 GiB 

MMC:   sdhci@e0100000: 0 (SD) 

** No device specified ** 

Using default environment 

 

In:    serial@e0000000 

Out:   serial@e0000000 
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Err:   serial@e0000000 

Board: Xilinx Zynq 

Silicon: v3.1 

Net:   ZYNQ GEM: e000b000, phyaddr ffffffff, interface rgmii-id 

eth0: ethernet@e000b000 

 

U-BOOT for petalinux 

 

ethernet@e000b000 Waiting for PHY auto negotiation to complete......... TIMEOUT ! 

Hit any key to stop autoboot:  0  

reading uEnv.txt 

486 bytes read in 12 ms (39.1 KiB/s) 

Loaded environment from uEnv.txt 

Importing environment from SD ... 

Running uenvcmd ... 

Copying Linux from SD to RAM... 

reading uImage 

4076304 bytes read in 238 ms (16.3 MiB/s) 

reading devicetree.dtb 

10683 bytes read in 17 ms (613.3 KiB/s) 

** No boot file defined ** 

 

5.2.9.3. Linux Kernel 

Linux kernel logs are only the reference. 

## Booting kernel from Legacy Image at 03000000 ... 

   Image Name:   Linux-4.14.0-xilinx-ge77ffb40e9a 

   Image Type:   ARM Linux Kernel Image (uncompressed) 

   Data Size:    4076240 Bytes = 3.9 MiB 

   Load Address: 00008000 

   Entry Point:  00008000 

   Verifying Checksum ... OK 

## Flattened Device Tree blob at 02a00000 

   Booting using the fdt blob at 0x2a00000 

   Loading Kernel Image ... OK 

   Loading Device Tree to 07ffa000, end 07fff9ba ... OK 

 

Starting kernel ... 

 

Booting Linux on physical CPU 0x0 

Linux version 4.14.0-xilinx-ge77ffb40e9a0-dirty (tgm@asus) (gcc version 8.3.0 

(GCC)) #1 SMP PREEMPT Mon Oct 25 18:38:15 CEST 2021 

CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d 

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache 

OF: fdt: Machine model: xlnx,zynq-7000 

Memory policy: Data cache writealloc 

cma: Reserved 16 MiB at 0x3f000000 

random: fast init done 

percpu: Embedded 16 pages/cpu @ef7cf000 s35084 r8192 d22260 u65536 

Built 1 zonelists, mobility grouping on.  Total pages: 260608 

Kernel command line: console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk 

rootfstype=ext4 rootwait 

PID hash table entries: 4096 (order: 2, 16384 bytes) 

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes) 

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes) 

Memory: 1012868K/1048576K available (6144K kernel code, 266K rwdata, 1672K 

rodata, 1024K init, 152K bss, 19324K reserved, 16384K cma-reserved, 24576) 

Virtual kernel memory layout: 

    vector  : 0xffff0000 - 0xffff1000   (   4 kB) 

    fixmap  : 0xffc00000 - 0xfff00000   (3072 kB) 

    vmalloc : 0xf0800000 - 0xff800000   ( 240 MB) 

    lowmem  : 0xc0000000 - 0xf0000000   ( 768 MB) 

    pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB) 

    modules : 0xbf000000 - 0xbfe00000   (  14 MB) 

      .text : 0xc0008000 - 0xc0700000   (7136 kB) 

      .init : 0xc0900000 - 0xc0a00000   (1024 kB) 

      .data : 0xc0a00000 - 0xc0a42a80   ( 267 kB) 
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       .bss : 0xc0a42a80 - 0xc0a68e44   ( 153 kB) 

Preemptible hierarchical RCU implementation. 

        RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2. 

        Tasks RCU enabled. 

RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2 

NR_IRQS: 16, nr_irqs: 16, preallocated irqs: 16 

efuse mapped to f0800000 

slcr mapped to f0802000 

L2C: platform modifies aux control register: 0x72360000 -> 0x72760000 

L2C: DT/platform modifies aux control register: 0x72360000 -> 0x72760000 

L2C-310 erratum 769419 enabled 

L2C-310 enabling early BRESP for Cortex-A9 

L2C-310 full line of zeros enabled for Cortex-A9 

L2C-310 ID prefetch enabled, offset 1 lines 

L2C-310 dynamic clock gating enabled, standby mode enabled 

L2C-310 cache controller enabled, 8 ways, 512 kB 

L2C-310: CACHE_ID 0x410000c8, AUX_CTRL 0x76760001 

zynq_clock_init: clkc starts at f0802100 

Zynq clock init 

clocksource: ttc_clocksource: mask: 0xffff max_cycles: 0xffff, max_idle_ns: 

537538477 ns 

sched_clock: 16 bits at 54kHz, resolution 18432ns, wraps every 603975816ns 

timer #0 at f080a000, irq=16 

sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 4398046511103ns 

clocksource: arm_global_timer: mask: 0xffffffffffffffff max_cycles: 0x4ce07af025, 

max_idle_ns: 440795209040 ns 

Switching to timer-based delay loop, resolution 3ns 

Console: colour dummy device 80x30 

Calibrating delay loop (skipped), value calculated using timer frequency.. 666.66 

BogoMIPS (lpj=3333333) 

pid_max: default: 32768 minimum: 301 

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes) 

Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes) 

CPU: Testing write buffer coherency: ok 

CPU0: thread -1, cpu 0, socket 0, mpidr 80000000 

Setting up static identity map for 0x100000 - 0x100060 

Hierarchical SRCU implementation. 

smp: Bringing up secondary CPUs ... 

CPU1: thread -1, cpu 1, socket 0, mpidr 80000001 

smp: Brought up 1 node, 2 CPUs 

SMP: Total of 2 processors activated (1333.33 BogoMIPS). 

CPU: All CPU(s) started in SVC mode. 

devtmpfs: initialized 

VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4 

clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 

19112604462750000 ns 

futex hash table entries: 512 (order: 3, 32768 bytes) 

pinctrl core: initialized pinctrl subsystem 

NET: Registered protocol family 16 

DMA: preallocated 256 KiB pool for atomic coherent allocations 

cpuidle: using governor menu 

hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers. 

hw-breakpoint: maximum watchpoint size is 4 bytes. 

zynq-ocm f800c000.ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0880000 

zynq-pinctrl 700.pinctrl: zynq pinctrl initialized 

e0000000.serial: ttyPS0 at MMIO 0xe0000000 (irq = 36, base_baud = 6249999) is a 

xuartps 

console [ttyPS0] enabled 

vgaarb: loaded 

SCSI subsystem initialized 

usbcore: registered new interface driver usbfs 

usbcore: registered new interface driver hub 

usbcore: registered new device driver usb 

media: Linux media interface: v0.10 

Linux video capture interface: v2.00 

pps_core: LinuxPPS API ver. 1 registered 

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti 

<giometti@linux.it> 

PTP clock support registered 

EDAC MC: Ver: 3.0.0 
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FPGA manager framework 

fpga-region fpga-full: FPGA Region probed 

Advanced Linux Sound Architecture Driver Initialized. 

clocksource: Switched to clocksource arm_global_timer 

NET: Registered protocol family 2 

TCP established hash table entries: 8192 (order: 3, 32768 bytes) 

TCP bind hash table entries: 8192 (order: 4, 65536 bytes) 

TCP: Hash tables configured (established 8192 bind 8192) 

UDP hash table entries: 512 (order: 2, 16384 bytes) 

UDP-Lite hash table entries: 512 (order: 2, 16384 bytes) 

NET: Registered protocol family 1 

RPC: Registered named UNIX socket transport module. 

RPC: Registered udp transport module. 

RPC: Registered tcp transport module. 

RPC: Registered tcp NFSv4.1 backchannel transport module. 

hw perfevents: no interrupt-affinity property for /pmu@f8891000, guessing. 

hw perfevents: enabled with armv7_cortex_a9 PMU driver, 7 counters available 

workingset: timestamp_bits=30 max_order=18 bucket_order=0 

jffs2: version 2.2. (NAND) (SUMMARY)  �© 2001-2006 Red Hat, Inc. 
bounce: pool size: 64 pages 

io scheduler noop registered 

io scheduler deadline registered 

io scheduler cfq registered (default) 

io scheduler mq-deadline registered 

io scheduler kyber registered 

dma-pl330 f8003000.dmac: Loaded driver for PL330 DMAC-241330 

dma-pl330 f8003000.dmac:        DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 

Num_Events-16 

 

 

[Trenz board version: TE0715-04-30-1I3.] 

 

[Final O/S version is not yet decide due to the lack of final PUT/Trenz boards.] 

 

5.3. Custom Made Applications 

5.3.1. Application: ad9361-config.run [TX + RX] 

[ad9361-config.run] application is used to configure AD9361 and the internal IP Core. The 

program is launched automatically at the system startup. To an extent it might be re-launched during 

the normal operational state of the system, although such an on-the-fly-re-configuration is strongly 

discouraged, as it may result in a non-optimal system state (e.g. not every AD9361 and IP Core 

internals could be properly configured). 

The configuration of [ad9361-config.run] application is kept in [/etc/radio/current/ 

ad9361-config.gflags] file. Note, however, that on the TX side, the location of the 

configuration file might be changed due to the availability of the pre-boot/post-boot configuration 

update mechanism. This mechanism is realized by an appropriate software and it is transparent from 

the point of view of [ad9361-config.run] application. 

The example of the configuration file mentioned in this section is shown below. 

 

# Default configuration of AD9361 

 

# Note that config lines cannot have comments! 
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### Cubesat specific configuration [BEGIN] 

 

# Without this option nothing in this section 

# is taken into account during configuration 

--conf_cubesat 

 

# Quadrature tracking 

--quad_track=ON 

 

# ENSM mode 

# Only TX and RX are support. 

# Anything else will lead to problems 

# Values: TX, RX 

--ensm_mode=TX 

 

### Cubesat specific configuration [END] 

 

 

### FPGA TRX config [BEGIN] 

 

# Turn ON/OFF FPGA TRX (TDD) 

--fpgatrx_enable=ON 

 

# Select code rate 

# Values: 0, 1, 2, 3, 4, 5, 6 

--code_rate=0 

 

# TX Data source 

# Values: 0, 1, 2 

--fpgatrx_tx_data_src=0 

 

# Length of frequency offset estimation preamble 

# Values: 0, 1, 2 

--fpgatrx_frequency_offset_estimation_preamble_length=2 

 

# Waiting time (in ms) before configuring / enabling FPGA TRX module 

--fpgatrx_enable_wait_time_ms=950 

 

# Wait time (in ms) after resetting the outer FPGA TRX IP CORE 

# We wait only if --fpgatrx_outer_ipcore_reset is present, i.e., 

# it is not uncommented. 

--fpgatrx_wait_after_outer_ipcore_reset_ms=45 

 

# Whether we do or do not reset the outer FPGA TRX IP CORE. 

# Comment if you want to disable resetting. 

--fpgatrx_outer_ipcore_reset 

 

 

### FPGA TRX config [END] 

 

# Direction 

--direction=TRX 

 

# FIR filter configuration 

--fir_filter_file=/etc/radio/filters/cubesat-filter-v0004-30dot72.ftr 

--fir_filter=ON 

 

 

# Extra register content 

# Format used is: reg1 << val1; reg2 << val2 

# NO QUOTES AROUND REGISTERS! 

# --extra_registers_content=0x035 << 0x0B 

 

 

# Carrier frequency in GHz 

# TX/RX filters on the small PUT radio boards have range 2120 -- 2170 [MHz] 

--c_frq=2.145 

 

# Bandwidth in MHz 

#--bandwidth=15 

--bandwidth=28 

 

# Sampling rate in MSPS (mega samples per second) 

# 

#--sampling_rate=7.68 

--sampling_rate=40.816326 

 



Rafał Krenz, ed. Transmitter Module CS.S2.SR 

Version 1.0 10.03.2022 44 

# TX power gain in dB 

--tx_power_gain=-25 

 

 

# Logging capability 

--log 

 

# Disable ADI digital interface FIR tune 

# (tuning must be disabled on picozed/ADRV1CRR-FMC) 

--disable_digital_interface_tune_fir 

 

# To simulate the bahaviour without setting any AD9361 config 

# Uncomment the following line: 

--dry-run 

 

5.3.2. Application: config-dispatcher.run [TX only] 

[config-dipatcher.run] is the application that is responsible for: 

 Reading configuration from OBC (via exchanging nanopb messages on the UART interface) 

for dependent applications, which are 

o [ad9361-config.run] application, and 

o [session-scheduler.run] application. 

 Translating this configuration to the format that is accept by the two applications mentioned 

in previous bullet points. 

 Preparing custom configuration files that are then delivered to the dependent applications. 

An example configuration file for this application is shown below. 

# Default configuration for config-dispatcher.run 

 

 

## UART Configuration [BEGIN] 

 

# TTY device 

--tty=/dev/ttyPS1 

 

# TTY parity 

--parity=NoParity 

 

# TTY Duplex mode 

--duplex=FullDuplex 

 

# TTY speed (in bits per second) 

--speed=115200 

 

## UART Configuration [END] 

 

 

# Time for which we wait to dispach configurations. 

# This time is in only counted until we receive first 

# configuration-related message. This is because the 

# exact delay cannot be precisely computed; assuming 

# the worst-case scenario the size of the configuration 

# file must be treated as a random variable. 

--uart_begin_config_wait_time_ms=1750 

 

 

# Configuration maps: 

# Note: All configuration maps **must** be specified in single line. 

#       Semicolon at the end is optional 

--config_maps=static_config: /etc/radio/current/ad9361-config.gflags > /var/cache/ad9361-

config.gflags; session_plan: /etc/radio/current/session-plan.yaml > /var/cache/session-

plan.yaml; 

 

 

 

# Logging 

--log 
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# To 'dry' run it uncomment the following line: 

# --dry-run 

 

5.3.3. Application session-scheduler.run [TX only] 

[session-scheduler.run] application is responsible for applying on-the-fly changes to the 

AD9361 (if necessary and possible) and to the custom IP core delivered by PUT. This application 

consumes the session plan (see an example file below) and applies the configuration at specified 

epochs / times. 

During the communications session, the following transmission parameters can be changed: 

 code rate (entrance: [fpgatrx/code_rate]), 

 TX power (entrance: [ad9361/out_voltage0_hardwaregain] – there is possibility to change TX 

power of only 0-th channel, since CBFR is equipped with only one antenna). 

 

REMARK! Note also that the order of epochs in the session plan need not to be arranged in a time 

ordered manner. The required sorting would be realized by the software. 

 

# Default configuration of satellite's session scheduler 

 

## Session plan contains a list of 'epoch' and 'config' pairs 

## that specify the time and exact configuration that is applied 

## to the RF communication module (a.k.a. CBTM, C-Band Transmitter Module). 

session_plan: 

    ## Epoch ('epoch') is the time at which the configuration is applied. 

    ## Its format is; YYYY-MM-DD HH:MM:SS 

  - epoch: 2021-08-19 16:35:30 

    ## Configuration ('config') contains a list of strings of the format: 

    ## 'value' > 'configuration_entity' 

    ## Character '>' is mandatory! 

    config: 

      - 1 > fpgatrx/code_rate 

      - -24.50 > ad9361/out_voltage0_hardwaregain 

  - epoch: 2021-08-19 13:55:55 

    config: 

      - 4 > fpgatrx/code_rate 

      - -25 > ad9361/out_voltage0_hardwaregain 

  - epoch: 2021-08-19 13:56:30 

    config: 

      - 0 > fpgatrx/code_rate 

      - -26.50 > ad9361/out_voltage0_hardwaregain 
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Appendix A 

Schematics of the CBSR transmitter module. 

 

 

Appendix B 

Mechanical design of the CBSR transmitter module. 

Note: full module documentation can be found in external step and gerber files. 

 


