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The CBSR receiver is one of the main components of the ground segment of the communication 

system (i.e. ground station). It is implemented using Software Defined Radio technique, however, 

both “hardware oriented” and “software oriented” versions will be developed for system flexibility. 

In this document the electrical and mechanical design of all versions are discussed along with 

implementation aspects. 
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List of acronyms 

 

BB Base-band 

CBSR C-band Satellite Radio 

DAC Digital to Analog Converter 

DMA Direct Memory Access 

FSM Finite State Machine 

NCBR Narodowe Centrum Badań I Rozwoju 

PA Power Amplifier 

PN Pseudorandom Noise 

PUT Poznań University of Technology 

SDR Software Defined Radio 

SR SatRevolution S.A. 

SoM System-on-Module 

SoC System-on-Chip 

t.b.d to be determined 
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1. Module Characteristics 

1.1. General Parameters 

The CBSR receiver has been designed as the main component of the Cubesat ground station which 

was developed and implemented at PUT.  

Based on the system specification presented in [1], the electrical parameters of the receiver are the 

following: 

 carrier frequency – user selectable between 5500 MHz and 6000 MHz, default 5840 MHz 

 channel bandwidth – user selectable: 1 MHz, 1.25 MHz, 5 MHz, 10 MHz, 20 MHz 

 modulation type - digital (quadrature) - OQPSK 

 channel coding – Turbo, user selectable code rate: 0.19 – 0.91 

 data/control interface – RS-232, Ethernet 

1.2. Implementation 

The receiver has been implemented using SDR technique, however, both “hardware oriented” and 

“software oriented” versions will be developed for system flexibility. 

1.2.1. “Hardware oriented” version 

In “hardware oriented” version most of the receiver functionality is implemented using Xilinx 

Zynq7000 SoC based hardware platforms. Using the receiver Simulink model, developed in the 

project, the proprietary IP-cores are generated for Zynq7000 Programmable Logic (PL). Zynq7000 

Processing System (PS) runs Linux applications which exchange data with the PL and perform non-

time-critical operations. 

The receiver implementation has been developed for two hardware platforms: 

 ADRV9361 (a.k.a PicoZed) SoM featuring AD9361 transceiver IC and Zynq7035 device 

 Mini-ITX board featuring Zynq7100 device with AD-FMCOMMS3 AD9361 evaluation module 

attached via FMC-LPC connector 

The “hardware oriented” version performs real-time processing of the received signal, delivering the 

transmitted data “on-line” for the user in the ground station.  

1.2.2. “Software oriented” version 

In “software oriented” version most of the receiver functionality is implemented using a high-

performance PC running the software receiver based on GnuRadio platform. The RF part uses the off-

the-shelf USRP B210 SDR hardware platform for signal reception and analog-to-digital conversion, 

attached to the PC via USB interface. 

The “software oriented” version performs non-real-time processing of the received signal, delivering 

the transmitted data “off-line” for the user in the ground station.  
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2. Module Electrical Design - “hardware oriented” version 

An efficient SDR implementation of the receiver requires application of an FPGA device. For this 

purpose a Xilinx ZYNQ System-on-Chip device, which combines dual-core ARM Cortex-A9 processor 

with the FPGA and a choice of interfaces was selected [2]. Most of the BB processing blocks are 

implemented in the FPGA, while the ARM processor is used for system control and management 

functions.  

2.1. ADRV9361 based receiver 

ADRV9361 is a Software Defined Radio (SDR) that combines the Analog Devices AD9361 integrated 

RF Agile Transceiver™ with the Xilinx Z7035 Zynq®-7000 All Programmable SoC in a small system-on-

module (SoM) footprint suitable for end-product integration. 

The key features of the module [3] are listed below: 

 Low-power - Designed with a -2LI version of the Zynq SoC (low power, mid speed, industrial 

temp), DDR3L, and high-efficiency voltage regulators with margining capability to scale 

power with performance. Built-in sequencing and monitoring make it easy to power to the 

module. 

 High bandwidth data connectivity - Move data quickly with dual Gigabit Ethernet, USB2.0, 

four 6.6 Gb/s serial links (PCIe x4, SFP+, others), and high-speed LVDS I/O for custom 

interfaces.  

 Wideband, frequency agile RF - Uses the AD9361 to provide a highly integrated radio that 

enables wideband 2x2 MIMO receive and transmit paths from 70 MHz to 6.0 GHz with 

tunable channel bandwidth <200kHz to 56MHz.  

 Programmable SoC - Embedded processing with the Zynq Z-7035 SoC provides a Dual ARM® 

Cortex™-A9 MPCore™ running at 800MHz, with built in peripherals like USB, Gigabit 

Ethernet, and memory interfaces.  

 Small form factor - 100mm x 62mm footprint.  

 Production-ready module - System-on-Module designed for immediate prototype and quick 

integration in your end application. Industrial temperature rated and tested against MIL-STD 

202G methods for Thermal, Vibration, and Shock.  

 Operating systems - Comes with Analog Devices Linux reference design for Zynq, bootable 

from an SD card. Also supports Linux, Android, FreeRTOS, eCos, VxWorks, and others not 

listed here.  

 Development tools - A broad range of SDR prototype and development environments are 

supported, including Analog Devices Linux Applications, and MATLAB® and Simulink® for data 

streaming and Zynq targeting.  

 Open-source code - Analog Devices provides precompiled reference designs on their PicoZed 

SDR wiki page and a source code support package hosted on Github, including the HDL and 

software code (except non-ADI). 

ADRV9361 module block diagram is depicted in Fig. 2.1 and Fig. 2.2 shows its layout. 

ADRV9361 can not work as a stand-alone module, it requires a corresponding carrier card. For this 

purpose the ADRV1CRR-FMC (a.k.a AES-PZSDRCC-FMC-G) carrier is used. The card gives designers 

access to a wide variety of peripherals and user I/O required to evaluate and develop with ADRV9361 

SoM. The carrier card provides all necessary SoM power, reset control, and Zynq SoC I/O pin 

accessibility through the board-to-board (B2B) micro headers (see Fig. 2.3, 2.4). 
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Fig. 2.1 ADRV9361 SoM block diagram  

 

 

Fig. 2.2 ADRV9361 SoM device layout 
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Fig. 2.3 ADRV1CRR-FMC carrier card block diagram 

 

 

Fig. 2.4 ADRV1CRR-FMC carrier card layout 
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2.2. Xilinx Zynq Mini-ITX based receiver 

The Xilinx Zynq Mini-ITX Development Kit provides a complete development platform for designing 

and verifying applications based on the Xilinx Zynq-7000 All Programmable SoC family. Available with 

the Zynq XC7Z045-2FFG900 or the XC7Z100-2FFG900 device in a small Mini-ITX form factor, the kit 

enables designers to prototype high-performance designs with ease, while providing expandability 

and customization through the FMC HPC expansion slot. The Zynq Mini-ITX development board 

features consist of: 

 Xilinx Zynq Z7100 SoC 

 1GB PS DDR3 SDRAM 

 1GB PL DDR3 SDRAM 

 32MB of QSPI Flash 

 8KB of I2C EEPROM 

 Real-Time Clock 

 10/100/1000 Ethernet Interface 

 USB-UART Interface 

 microSD Card Interface 

 USB 2.0 4-Port Hub 

 PCIe x4 Root-Port (x16 physical Slot) 

 SATA-III Interface 

 FMC HPC Slot (VADJ of 1.8V, 2.5V, or 3.3V) 

 SFP Socket 

 LVDS Touch Panel Interface 

 HDMI Interface 

 Audio Codec 

 User LEDs and Switches 

 Programmable LVDS Clock Source (GTX reference clock) 

 200 MHz LVDS Oscillator (system clock) 

 JTAG Header 

The Mini-ITX Development Kit block diagram is depicted in Fig. 2.5. 

The on-board FMC slot is used to connect to the AD-FMComms3-EBZ transceiver board. It provides 

AD9361 based RF platform, a highly integrated radio that enables wideband 2x2 MIMO receive and 

transmit paths from 70 MHz to 6.0 GHz with tunable channel bandwidth <200kHz to 56MHz.  

The Mini-ITX platform, including the RF part, is shown in Fig. 2.6. The boards are mounted in a Mini-

ITX format enclosure, together with a power supply.  
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Fig. 2.5 Mini-ITX Development Kit block diagram 

 

 

Fig. 2.6 Mini-ITX SDR platform  
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3. Module Electrical Design - “software oriented” version 

The “software oriented” receiver is designed for low-cost applications, e.g. at supporting ground 

stations which do not require on-line decoding of the transmitted data. 

3.1. USRP B210 hardware platform [] 

The USRP B210 provides a fully integrated, single-board, Universal Software Radio Peripheral 

(USRP™) platform with continuous frequency coverage from 70 MHz – 6 GHz. Designed for low-cost 

experimentation, it combines the AD9361 RFIC direct-conversion transceiver providing up to 56MHz 

of real-time bandwidth, an open and reprogrammable Spartan6 FPGA, and fast SuperSpeed USB 3.0 

connectivity with convenient bus-power. Full support for the USRP Hardware Driver™ (UHD) 

software allows you to immediately begin developing with SDR software environment, e.g. GNU 

Radio. 

The integrated RF frontend on the USRP B210 is designed with the new Analog Devices AD9361, a 

single-chip direct-conversion transceiver, capable of streaming up to 56 MHz of real-time RF 

bandwidth. The B210 uses both signal chains of the AD9361, providing coherent MIMO capability. 

Onboard signal processing and control of the AD9361 is performed by a Spartan6 XC6SLX150 FPGA 

connected to a host PC using SuperSpeed USB 3.0. The USRP B210 real time throughput is 

benchmarked at 61.44MS/s quadrature, providing the full 56 MHz of instantaneous RF bandwidth to 

the host PC for additional processing. 

Since the receiver uses a single receive channel, a simpler (and cheaper) USRP B200 platform can be 

used without any degradation. 

 

Fig. 2.7 USRP B210 hardware platform 
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4. Receiver implementation – PL part (FPGA) for “hardware oriented” 

version 

4.1. Simulink model 

The receiver implementation in FPGA is prepared similarly to the transmitter with the help of 

Matlab/Simulink and its HDL Coder toolbox. In Fig. 4.1 the receiver block inputs and outputs are 

presented, the relevant ones are described in Table 4.1. 

 
Fig. 4.1 Receiver block 

 

Table 4.1 Inputs and outputs of receiver block 

Name Type Description 

rx_I/rx_Q Input Receivers’ in-phase and quadrature component samples 

valid_in Input Valid signal for ADC samples 

ENABLE_REG  
Input/ 
Output 

Register that stores i.a. a value that enables/disables the 
receiver. When its state is high, the signal can be 
received, when it’s low the receiver will stop collecting 
samples on its input 

RADIO_CONFIG_REG 
Input/ 
Output 

A register used to set: 

 the transmission mode (described in [3]) 

 the roll-off factor of the shaping RRC filter. There 
are 2 settings available i.e. 0 and 1. 

 the length of the frequency offset estimation part 
of the preamble (described in [3]) 

NUM_RF_SUBFRAMES_REG 
Input/ 
Output 

Sets the number of subframes in each radio frame.  

data_out Output 32-bit data words 

valid_out Output Indication whether output data is valid 

SUBFRAME_COUNT_REG Output The number of received subframes 

SUBFRAME_ERR_COUNT_REG Output The number of erroneous subframes 

BIT_COUNT_REG  Output 
The number of received bits in transmission modes 

1 and 2 
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BIT_ERR_COUNT_REG Output 
The number of erroneous bits in transmission modes 

1 and 2 

In Fig. 4.2 and Fig. 4.3. the general structure of the receiver is presented. The main components of the 

receiver are shown and described in detail in the subsequent sections. 
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Fig. 4.2 Overview of the receiver Simulink schematics - part 1 
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Fig. 4.3 Overview of the receiver Simulink schematics - part 2 
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4.1.1. Matched Filtering 

The operations performed in the receiver are the inversion of those performed in the transmitter. The 

first part of the receiver (depicted in Fig. 4.4.) is responsible for filtering received signal samples with 

a matched RRC filter. The output samples from the filter are stored in an input buffer (Input Buffer 

block in Fig. 4.2) but also fed into a signal detection and time synchronization block named 

TSyncPreambleDetection 

 

Fig. 4.4 Matched filtering 

 

4.1.2. Time synchronization 

The internal structure of the detection and time synchronization block is shown in Fig. 4.5. The input 

samples are first filtered with a FIR filter with coefficients matching the Zadoff-Chu sequence used in 

the T_AMB part of the preamble. The output of the filter is fed into a magnitude and phase calculation 

block. The magnitude is used to construct a correlation metric used for signal detection and time 

synchronization, whereas the phase is used for initial coarse phase offset estimation. The main part of 

the synchronization subsystem is the Sync Machine FSM (Fig. 4.6). The inputs and outputs of this block 

are shown and described in Table 4.2. 

 

Fig. 4.5 Signal detection and time synchronization 

The main task of the Sync Machine block is to find the address in the input buffer for which the 

correlation metric is the highest (assuming that it is higher than the threshold). When the peak in 

correlation value has been found the Sync Machine starts the process of reading samples from the 

input buffer. The output from the buffer is fed into several subsystems that perform operations such 

as coarse frequency offset estimation and coding rate estimation, simultaneously/ 
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Fig. 4.6 Sync Machine FSM 

 

Table 4.2 Selected Inputs and outputs of Sync Machine 

Name Type Description 

corr_in Input 
Received signal correlation metric used for signal detection 
and time synchronization 

addr_in Input Current write address in the input buffer 

phase 
Input 

 
Received signal phase metric used for initial phase offset 
estimation 

th 
Input 

 
A threshold value for signal detection 

F_AMB_LEN Input 
The length of the preamble used for frequency offset 
estimation  

cri_ready Input Indication whether the coding rate has been evaluated 

read_num_sampels Input 
Number of samples to read from the input buffer before the 
next signal detection window 

cont_preamble_en Input 
Used to enable continuous preamble mode in the 
synchronization block 

enabled Input 
A line used to enable/disable synchronization is related to 
the enable signal of the receiver 

read_addr_out Output Current read address from the input buffer 

valid Output 
A signal indicating that the output samples of the input 
buffer are valid 

sync Output 

A signal indicating that radio frame has been detected. The 
samples output by the input buffer when this signal is high 
are fed into a coarse frequency offset estimation block. 
These samples belong to the F_AMB part of the preamble. 

sel_phase Output Initial coarse phase offset estimate 

4.1.3. Coarse Frequency offset estimation 

The first F_AMB_len samples from the input buffer are used for coarse frequency offset estimation. 

The goal of this subsystem is to mitigate the effect of a frequency shift. The main source of this shift is 

the Doppler effect, which impact is also mitigated outside of the receiver implementation, and this 

subsystem was designed to reduce the impact of any leftover shift that wasn’t already compensated. 
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The internal structure of the coarse frequency offset estimation is shown in Fig. 4.7. Its operation is 

based on performing FFT on F_AMB preamble samples. The index of the maximum magnitude value 

of the FFT outcome and the F_AMB preamble samples are used for calculating metrics used for 

frequency offset estimation. The detailed algorithm was described in the report [4]. 

 

Fig. 4.7 Frequency offset estimation  

4.1.4. Coding rate evaluation 

The information about the coding rate used in the transmitter is carried by a phase midamble. Each 

coding rate has its own form of midamble created by performing a cyclical shift on a base Zadoff-Chu 

sequence. In order to correctly disassemble the received radio frame the correct value of the coding 

rate used in the transmitter is essential. Hence, the coding rate has to be known before we can process 

the radio frame. The block responsible for evaluating the coding rate is shown in Fig. .4.8. It operates 

on the samples coming from a midamble filter subsystem shown in Fig. 4.9. The filter subsystem 

performs filtering with base Zadoff-Chu coefficients and the magnitude of the filtered samples is used 

in the CRI evaluation subsystem. In the evaluation, we search for the sample index for which the 

magnitude is maximal. This index is fed into a post-processing system responsible for converting it to 

the coding rate indicator in the range from 0 to 7 (where values 0-6 denotes valid coding rates and 

value 7 denotes the EoT frame).  

 

Fig. 4.8 Coding rate evaluation  

 

 

Fig. 4.9 Midamble filter  
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4.1.5. Radio frame disassembly 

The samples coming from the input buffer are stored in dedicated queues (in the frequency offset 

correction block), where they wait for the coding rate evaluation and coarse frequency offset 

estimation to finish their processing. There is one queue for the data symbols and one for 

midamble symbols. The write operation to each of the queues is managed by a controller depicted 

in Fig. 4.10. The inputs and outputs of this controller are described in Table 4.3. 

 

 

Fig. 4.10 Write controller  

 

Table 4.3 Inputs and outputs RxWriteControl block 

Name Type Description 

write_en Input 
A line indicating that samples are valid and can be written to 
processing queues 

num_phase_midamble Input 
A line that specifies the number of phase midambles in 
subframe (evaluated based on coding rate) 

num_subframes  Input Number of subframes in radio frame 

eot Input 
A line indicating that EoT frame has been received and no 
further write operation is allowed until the next reception 
session. 

write_data Output 
A line indicating that the currently processed sampes should 
be written to data samples queue 

write_midamble Output 
A line indicating that the currently processed sampes should 
be written to midamble samples queue 

 

The evaluated coding rate value is fed to a EoT Detector and CRI verifier controller (Fig. 4.11), which 

task is to analyze the coding rate value and recognize the EoT frame and also check whether the coding 

rate value is in the allowed range of 0 to 6. The inputs and outputs of the controller are described in 

Table 4.4. 

In the case that the EoT frame is recognized the controller indicates the fact by setting the eot_flag 

which will disable some parts of the receiver until the next reception session is started. If the controller 

detects that the coding rate value is outside the allowed range an override_cri signal is set which will 

cause the receiver to use the default coding rate value which is 0. The frame where the coding rate 

evaluation is incorrect will be lost.  



Rafał Krenz, ed. Receiver Module CS.S7.Gen 

Version 1.0 21.02.2023 20 

 

Fig. 4.11 EoT detector and coding rate verifier 

 

Table 4.4 Inputs and outputs of EoT detector and coding rate verifier block 

Name Type Description 

cri_val Input Currently estimated coding rate value 

cri_valid Input A line indicating that the cri_val is valid 

flush_end Input A line indicating that the EoT procedure has been completed 

override_end Input 
A line used to reset coding rate override in the case that the 
coding rate evaluation resulted in invalid value 

rx_enable Input An indication whether the receiver is enabled. 

override_flag Output 
A line indicating that the evaluated coding rate value is 
invalid and should be replaced with default value of 0 

eot_flag Output 
A line indicating that the EoT frame has been detected used 
to start the EoT procedure 

 

When the frequency offset estimation and coding rate evaluation are done, the samples stored in the 

data and midamble queues can be read and coarse frequency correction can be performed on these 

samples. The read process is controlled by the RxFrameControl block depicted in Fig. 4.12. The inputs 

and outputs of the controller are described in Table 4.5. 

The samples coming from the midamble queue are fed into a midamble filter subsystem described in 

section 4.1.4, where the magnitude and phase of the filtered samples are calculated. The results are 

fed into a fine frequency and phase offset estimation block.  

The samples coming from the data symbols queue are fed into fine frequency and phase offset 

correction block where the offsets are compensated and the result is fed into a demodulator. 
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Fig. 4.12 RxFrameControl block  

 

Table 4.5 Inputs and outputs of RxFrameControl block 

Name Type Description 

process_en Input 
A line indicating that coarse frequency offset estimation has 
been completed and the ramining part of the received 
samples can be processed 

num_phase_midamble Input 
A line that specifies the number of phase midambles in 
subframe (evaluated based on coding rate) 

num_subframes  Input Number of subframes in radio frame 

d_sym_valid Output 
A line indicating that the data samples should be read from 
processing queues 

ph_sym_valid Output 
A line indicating that the midamble samples should be read 
from processing queues 

read_buf Output 
A line indicating that samples should be read from 
processing queues 

subframe_end Output A line indicating the end of a subframe 

 

4.1.6. Fine phase and frequency offset estimation 

The fine phase and frequency offset estimation subsystem is depicted in Fig. 4.13. It accepts magnitude 

and phase values calculated by the midamble filter described in section 4.1.4. The offsets are calculated 

for the phase value for which the magnitude had a maximal value. The exact algorithm is described in 

the report [4].  

 

 

Fig. 4.13 Fine phase and frequency offset estimation 
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4.1.7. Demodulation 

The demodulation of the OQPSK symbols is performed in the subsystem shown in Fig. 4.14. The OQPSK 

symbol is first converted to a QPSK equivalent by delaying the real component of the symbol by half 

the base sampling rate of the modulated signal. The QPSK symbols are then mapped to a likelihood 

metrics that can be used in the decoder. 

 

Fig. 4.14 demodulation subsystem 

 

4.1.8. Decoding 

The decoding subsystem is depicted in Fig. 4.15. It consists of a set of parallel turbo decoders. The need 

for more than one decoder is due to the fact that the processing delay of a single instance is too high 

and a single decoder would not be able to decode all the received subframes in time. Based on a 

thorough analysis the number of required decoders was set to 6. The decoders are run in a sequential 

manner and are configured in such a way that the output from each does not overlap with others, 

hence there is no need to add more than one CRC verification block. The CRC verification block is 

responsible for checking the CRC of the received data and indicating whether it is correct or not. The 

data with the error flag is discarded in transmission mode 0. However, for transmission mode 1 the 

erroneous data is analyzed and error statistics are gathered.  

 

Fig. 4.15 Decoding subsystem 
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4.1.9. Data packing 

The final step in the receiver processing chain is the data packing operation. The block responsible for 

this task is depicted in Fig. 4.16. Its main goal is to convert bits into 32-bit words that are accepted by 

the software. In addition, this block is also responsible for detecting fake subframes which are either 

discarded in transmission mode 0 or analyzed for bit errors in transmission mode 1.  

 

Fig. 4.16 Data packing subsystem 
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4.2. Custom-made IP cores 

4.2.1. Introduction 

The FPGA-based signal processing routine, created with the aid of MATLAB HDL Coder, is encapsulated 

into a user-developed Vivado IP core. To incorporate a receiver IP core into a Vivado block diagram, a 

Matlab HDL workflow coder is used. The workflow operates according to a given so-called reference 

design, which specifies the Vivado block diagram, the way in which the custom-made IP core is merged 

with it, and the board pin assignment (constraint file). The reference designs have a form of TCL scripts. 

In the current project, a reference design by Analog Devices, dedicated to Mini-ITX device, equipped 

with Xilinx Zynq®-7000 All Programmable SoC XC7Z045 and an FMC2/3/4 transceiver card with 

AD9361, is used as a baseline. The device used in the project is Mini-ITX with XC7Z100 plus the 

FMC2/3/4 card, so the reference design requires some customization. Another reason to do that is the 

fact that the original reference design seems to be most accurate in the cases where the IQ samples 

(for 2 receiver channels) are conveyed through PL directly to PS since there are four interleaved 16-bit 

data lines on the PL to PS interface. Signal processing in PL is an option (the user-specified IP core can 

be by-passed in some cases).  

In the current project, the data transferred from PL to PS via DMA have the meaning of binary vectors 

instead of complex IQ samples; the data rate on the PL<>PS interface is significantly smaller than the 

symbol rate on the SoC<>AD9361 interface as there is nothing else but PL responsible for the physical-

layer signal processing (frame detection, demodulation, channel estimation, channel decoding, 

descrambling, etc.). As a consequence, it is more accurate to consider only one wide data line on the 

PL<>PS interface. The data vectors to be transferred to PS via DMA are generated asynchronously once 

a new frame has been acquired and decoded with no errors. For that reason it is necessary to wire a 

“data valid” line along with the data line.  

Another problem to be solved when using MiniITX-XC7Z100 part is that Vivado has been lacking its 

definition for a few years. To overcome that issue, some tweaks in Vivado installation are necessary. 

Making them results with appearance of MiniITX-XC7Z100 part on a board selection pane (see 

Fig. 4.17) and xc7z100ffg900-2 SoC in project settings (Fig. 4.18) 

4.2.2. Reference design customization 

With the aim to overcome the disadvantages of the original reference design, the datapath is 

significantly modified. Four 16-bit data lines have been replaced with one 32-bit data line. 

Consequently, data streams are not interleaved anymore (interleaving required troublesome 

synchronization between the streams), so the blocks responsible for stream interleaving and 

deinterleaving are removed. The utility_buffer IP, originally placed between FIFO at the clock domains’ 

border and the DMA interface, has been removed. It was devoted to alleviate the problem of 

asynchronous type of data feed through DMA interface, but it has appeared to cause highly undesired 

random delays. 
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Fig. 4.17 Device selection window in Vivado with the desired board included 

 

 
Fig. 4.18 Desired SoC version shown in the project settings 

 

The genuine reference design by Analog Devices features more IP cores useless from the perspective 

of the current project. In particular, it refers to the IP cores playing the role of HDMI, SPDIF, and I2S 

interfaces; their removal brings reasonable FPGA resources savings. Note that removing unnecessary 

IP cores involves modification of both wrapper- and system top HDL files.  

Some minor changes, shown in Fig. 4.19, have been made in the settings of axi_ad9361 IP core, 

responsible for transferring IQ passband signal samples, received by AD9361, to FPGA. 
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Fig. 4.19 Configuration window of axi_ad9361 IP core 

 

In detail, 1R1T mode is chosen to eliminate redundant support for two receive channels (according to 

the project assumptions, only one receive channel is utilized). Additionally, TDD disable option is 

checked, since the AD9361 is forced to operate permanently in Rx mode by an SPI write to AD9361 

registers instead of periodic Tx/Rx toggling, controlled via FPGA pins. Thanks to that, neither 24-bit 

TDD counter nor a few reference registers of the same size are implemented in FPGA. The rest of 

configuration fields of axi_ad9361 IP core take the default values. DDS feature is enabled for testing 

purposes.  

Another improvement has been made in the domain of custom-made IP core clocking. In the original 

reference design, the user’s IP core is clocked by the AD9361 clock divided by 2 (or by 4 in the case of 

2 transmit streams – not applicable to the current design). It limits the system capability of serial data 

processing, since half of the clock cycles are not usable. Instead, the custom-made IP core is now 

clocked with the original AD9361 clock (rx_clk), distributed throughout the FPGA device directly from 

a respective BUFG element. 

The decision to eliminate a separate clock domain for custom-made IP core results with a simpler clock 

cross-domain management: there is only one clock-domain crossing in the data path, handled safely 

by means of a FIFO in axi_ad9361_adc_dma IP core. To transfer commands and status messages data 

between the time domains (clk_fpga_0 and rx_clk) through AXI4-Lite, a 3-stage synchronizer is placed 

in the axi_cpu_interconnect IP core. Together with AXI protocol handshaking, it guarantees safe 

transfers.  

Taking into account asynchronous data transfer between the clock domains (for both data path and 

the control/status AXI channel), it is desired to constrain intra-clock paths on FPGA as false paths, 

thereby instructing the Vivado placer to ignore them; it helps overcome timing-related issues when 

routing. Fig. 4.20 proves that the paths between clock domains: clk_fpga_0 and rx_clk are successfully 

set as false paths in Vivado.  
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Fig. 4.20 Clock interaction report for the implemented design in Vivado 

 

Not only is the MATLAB HDL workflow responsible for generating appropriate interfaces of the custom-

made IP core and incorporating it into the reference design, but also for attaching extraordinary 

constraint files to the project. The constraint files contain the settings related to the hardware pinout, 

clock frequency, false paths, etc. The pinout for MiniITX-XC7Z100 is identical as for MiniITX-XC7Z045, 

so the constraint files related to the pins’ voltage and their assignment imported from the original 

reference design are kept untouched. 

4.2.3. The use of Simulink HDL Workflow Advisor  

To avoid compatibility issues with a quite outdated reference design for MiniITX-XC7Z045, the authors 

have decided to target their own MiniITX-XC7Z100 reference design for Vivado 2016.4. It has been 

integrated with the HDL Workflow of Matlab 2017b under the name of MiniITX – it should be chosen 

as the Target platform in Step 1.1 of the HDL Workflow Advisor, as shown in Fig. 4.21. Note that the 

accurate MiniITX device (xc7z100) is associated with it, automatically. As the result of researchers’ 

efforts, Step 1.2 (shown in Fig. 4.22) enables setting specific board peripherals to be used or not. 

Thanks to that one can decide to activate: LEDs, buttons, or DIP switches to control or observe selected 

lines. According to his/her choice, one of alternative reference designs is loaded.   

Step 1.3, shown in Fig. 4.23, brings the possibility to connect the inputs and outputs of the developed 

Simulink block diagram to appropriate reference design wires (aka target platform interfaces). Note 

the possibility to choose LEDs in the middle column. The use of board peripherals, like LEDs, buttons, 

DIP switches must match the choices made in Step 1.2. If not, an error message will appear. The 

meaning of specific target platform interfaces is explained in Table 4.6. It does not include the Simulink 

ports attached to the AXI4-Lite interface, used to send control commands from PS to PL and read 

diagnostic messages in the opposite direction.  

After passing checks in Steps 2.1-2.4, the HDL code for the custom-made IP core is generated in 

Step 3.2 of HDL Workflow Advisor. The generated IP core is deposited in a folder specified by the user 

and can be manually placed into any Vivado block diagram. However, the customized reference design 

MiniITX features the possibility to automatically integrate the IP core with the block diagram. It can be 

done in Step 4.1 of HDL Workflow Advisor. If the process ends successfully, a link to a new-created 

Vivado project appears in a log window of HDL Workflow Advisor, as shown in Fig. 4.24). Clicking the 

link launches Vivado and the project opens.  It is not suggested to run remaining steps of HDL Workflow 

Advisor, as they are accurate only for the case when FPGA processing is controlled by Simulink (a kind 

of hardware-software co-simulation).  
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Fig. 4.21 Step 1.1 of HDL Workflow Advisor 

 

 
Fig. 4.22 Step 1.2 of HDL Workflow Advisor 
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Fig. 4.23 Step 1.3 of HDL Workflow Advisor (assignment of target platform interfaces to ports is 

random) 

 

Table 4.6 Target platform interfaces in HDL Workflow Advisor 

Name Type Mating pin on Simulink 
diagram 

Description 

RxSampleI0In 
RxSampleQ0In 

Input 
RxAnt_I 
RxAnt_Q 

16-bit inputs for IQ samples of 
the passband signal, represented 
in 2’s complement format; 
actually, 4 leading bits are 
redundant 

RxSampleValidIn Input Valid In 

This line is periodically strobed 
by axi_ad9361 IP core to 
indicate useful samples; for 1R1T 
mode, a pulse appears every 2nd 
AD9361 clock cycle 

RxDataOut Output DUTDataOut 
32-bit vector conveying received 
decoded data to PS via DMA   

RxDataValid Output DutValidOut 
Strobe for RxDataOut – it forces 
FIFO at the clock domain border 
to accept another data load 
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Fig. 4.24 Result of successful execution of the last step of HDL Workflow Advisor 

 

4.2.4. Vivado project details 

The complete block design of Vivado project is shown in Fig. 4.25, while a closeup on the custom-made 

IP core is presented in Fig. 4.26. The target platform interfaces from Matlab HDL Workflow Advisor are 

mapped to legacy IP core interfaces in Vivado block diagram according to Table 4.7.  

 

Table 4.7 Target platform interfaces mapping 

Name in HDL 
workflow advisor 

IP core interface name in Vivado 
block design 

RxSampleI0In 
RxSampleQ0In 

sys_wfifo_0_dma_wdata 
sys_wfifo_1_dma_data 

RxSampleValidIn sys_wfifo_valid_in 

RxDataOut dut_data_0 

RxDataValid dut_data_valid 

 

There are some additional lines: AXI4-Lite bus (to receive control commands from PS and send status 

messages), as well as reset and clock lines (separate for AXI bus sub-module and the rest of the IP 

core). Since the clock-domain crossing is located in axi_cpu_interconnent, the whole custom-made IP 

core clocking belongs to a single clock domain of rx_clk, originated from l_clk pin of axi_ad9361 block.  

The IP core reset line is conjugated with PS reset by util_ad9361_divclk_reset block, responsible for 

transferring the PS-generated reset to rx_clk clock domain. Note that the IP core must be additionally 

resetted by an AXI write after AD9361 has finished all callibrations. Failure to do so might lead to 

unpredictable IP core operation and metastability.  

The design is synthesized with the clock constraints specified according to the most demanding 20 MHz 

bandwidth transmission mode. The mode choice is managed by appropriate frequency setting of rx_clk 

on AD9361 and impacts the speed of data passing through the whole data path in the rx_clk domain. 
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Fig. 4.25 Vivado block design 

 

 

Fig. 4.26 Custom-made IP core 
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5. Receiver implementation – PS part (software) for “hardware 

oriented” version 

5.1. TX vs RX – disambiguation 

Processing System part is run on two boards, mainly: 

 Trenz board (board version: TE0715-04-30-1I3), 

 MITX (aka MiniITX board with Z100 FPGA, board version: Mini-ITX-7Z-ASY-G). 

The most recent HDL version Analog Devices’ HDL that supports AVNET’s MiniITX box is hdl_2017_r1, 

while HDL version that is compatible with Trenz board is hdl_2018_r2. A chain of dependencies 

caused by such a seemingly unimportant version difference results in two different Linux O/S 

versions that run on those boards. It is of an uttermost importance to note that such a choice of O/S 

version was dictated by technical arguments, not by dogmatic or opinionated ones. Details are 

shown in the table below. 

 

Side Board HDL O/S Vivado Matlab 

TX Trenz TE0715-04-30-1I3 hdl_2018_r2 2018_R2 2018.2 2019a 

RX Mini-ITX-7Z-ASY-G hdl_2017_r1 2017_R1 2016.4 2017b 
 

5.2. Operating System 

Transmitter module is based on Trenz board TE0715-04-30-1I3, a consequence of which is using 

Analog Devices’ Linux version 2018_R2 (kernel 4.14.0). [Note, however, that due to the 

unavailability of the final board at the time of preparation of this document, the chosen version of 

O/S was tested only on Trenz’s motherboard TE0705-04. As a result, this O/S version is not yet 

decided to be final.] 

5.2.1. Cross-compiling Tools 

Linux kernel together with all supporting libraries and tools were built with GCC 11.2.0. [As of the 

preparation time of this document, the final version of GCC is practically frozen, although it still might 

be changed to a different one if necessary.] 

5.2.2. Shell 

O/S is interfaced via ash (Almquist shell). 

5.2.3. Kernel Configuration 

Kernel was configured using a customized Xilinx configuration provided by Analog Devices Inc. in the 

source tree of Linux kernel under the name [xilinx_zynq_defconfig]. The customization 

involved additional configuration of: 

 DMA Engines (with Xilinx DMA Engines), 

 AXI DMAC, 
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 AD9361, 

 AD9517, and 

 AXI DDS (Digital Direct Synthesizer). 

5.2.4. FPGA Driver and Kernel Modules 

FPGA Driver is loaded as a kernel module during the system boot-up. Detailed documentation of the 

driver attributes can be found in the auto generated documentation file [10]. Delivered as an 

attachment to this document. [Note, however, that eventual further changes to the implementation 

of the IP Core may require corresponding updates to the driver documentation]. 

5.2.4.1. Driver Attributes Description 

As mentioned previously, the documentation describing driver attributes is automatically generated. 

A similar approach is used to create the driver code (obviously, only the most redundant parts). This 

is achieved by describing driver’s attributed in a YAML file, which in turn is used to generate driver’s 

and Latex’s code for the driver itself and its documentation, respectively. Such an approach was used 

in order to easily keep in sync changes made to the driver and its documentation. An example 

entrance that describes the hardware_version attribute is shown in the listing below. 

 

# Snip... 

- name: hardware_version 

  generated_driver_code: 

[offsets,driver_entrances,driver_attributes_short,help_messages] 

  type: __u32 

  rd_offset: 0x04■■ 

  wr_offset: null 

  rd_buffer_size: 16 

  wr_buffer_size: 10 

  rd_function: scnprintf 

  wr_function: kstrtou32 

  mask_spec: null 

  trx_side: [tx,rx] 

  help_msg: |- 

      None 

  description: |- 

      Version of bit-stream hardcoded in the hardware. 

      It is not possible to write into this register! 

  hardware_name: DEV_ID 

  available_values_hardware: null 

# Snip... 

 

5.2.4.2. Kernel Modules Loading 

Despite most of the kernel modules being compiled directly into the kernel itself, the FPGA driver is 

not. Such an approach allows eventual changes to the driver without the need of recompiling the 

whole kernel. The script used to load / unload kernel modules (which is located in 

[/etc/rc.d/init.d/modules_conf]) is presented below. Note that contrary to most 

arguments that such scripts accept, this particular one also accept arguments: load, unload and 

reload (which corresponds to standard: start, stop and restart, respectively). Such an 

approach allows using semantic that is closer to module loading / unloading. The configuration file 

that drives the modules loading is located in [/etc/modules.d/modules.conf] and it is 

discussed in the next section. 
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#!/bin/ash 

# 

# modules auto loading/unloading 

# 

 

. /etc/rc.d/init.d/functions 

 

modules_config_file="/etc/modules.d/modules.conf" 

 

modules_load_unload() { 

    local modprobe_param="${1}" 

    local msg="loading" 

    [ "${modprobe_param}" == "-r" ] && msg="unloading"; 

 

 

    echo -n "${0}: Checking whether ${modules_config_file} exists and is valid: " 

    [ -r ${modules_config_file} ] && grep -qv "^($|#)" ${modules_config_file} 

    local ERR=$? 

    [ 0 == ${ERR} ] && true || false 

    check_status 

    [ 0 == ${ERR} ] || { echo "${0} Not ${msg} modules! Problems with 

${modules_config_file} file!"; exit 0; } 

 

    sleep 0.1 

 

    while read module args; do 

        # Skipping blank or commented-out lines" 

        case "${module}" in 

            ""|"#"*) continue;; 

        esac 

 

        modprobe ${modprobe_param} ${module} ${args} 

        ERR=$? 

        echo -n "${0}: ${msg} ${module} with params: `[ "" != "${args}" ] && echo 

${args} || echo -*NONE*-`: " 

        [ 0 == ${ERR} ] && true || false 

        check_status 

        sleep 0.1 

 

    done < ${modules_config_file} 

 

} 

 

case "$1" in 

    start|load) 

        modules_load_unload "" 

    ;; 

 

    unload|stop) 

        modules_load_unload "-r" 

    ;; 

    reload|restart) 

        $0 stop 

 

        sleep 1 

 

        $0 start 

    ;; 

    *) 

        echo "Usage: ${0} {start|stop|restart|load|unload|reload}" 

        exit 1 

    ;; 

esac 

 

exit 0 
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5.2.4.2.1. Modules configuration file 

The aforementioned modules configuration file (which is located in 

[/etc/modules.d/modules.conf]) allows loading arbitrary modules (not only the FPGA 

driver). The example script is shown in the listing below. Besides specifying modules to load, it also 

allows specifying module’s parameter, e.g., in the listing below module fpgatrx is loaded with 

parameter DEBUG set to 1. Kernel object files that contain the modules’ code are located in 

[/lib/modules/$(uname -r)/kernel/drivers/], where [$(uname –r)] is release of 

the running kernel, in our case it is: 4.14.0-xilinx-ge77ffb40e9a0-dirty. [But as already 

mentioned this release might still be subject to an eventual change.] 

 

# File: /etc/modules.d/modules.conf 

# 

# In order to load module at the system boot-up, add: 

# 

# module_name module_param_1 module_param_2 

# 

 

fpgatrx DEBUG=1 

 

5.2.5. Libraries and Tools 

O/S is delivered with tools and libraries described in the table below. [Please note that the final 

versions of some of these artifacts may be changed if deemed necessary.] 

 

Tools / Library Version TX Version RX Description 

Binutils 2.27  Set of tools and libraries for building binary 
executable(s), e.g., liker, assembler, etc. All 
build for ARM Cortex A9 processor, but without 
dubious optimisation flags. 

Busybox 1.24.2  Swiss-army-knife toolbox with standard set of 
tools for working in a Linux environment. (All 
tools are delivered as via symbolic links to one 
executable.) 

IANA-ETC 2.30 
patched 

 Data / information package for network 
protocols and services. 

MPC 1.0.3  Arbitrary precision floating-point complex 
arithmetic library. (GCC dependency.) 

MPFR 3.1.4  Arbitrary precision floating-point library. (GCC 
dependency.) 

musl-libc 1.1.19  Standard C library for embedded systems. 

zlib 1.2.11  Data compression library. 

netplug 1.2.9.2  GNU/Linux daemon for network services. 

Dropbear 2018.76  Lightweight implementation of SSH library. 

LibXML2 2.9.8  XML parsing library, implemented in C. libiio 
dependency. 

Boost 1.67  Boost – an umbrella of C++ utility libraries. Most 
of them are header-only libraries. Only three 
are installed on the final system: 
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libboost_atomic, libboost_chrono, 

libboost_system. 

tree 1.7.0 1.7.0 Command line recursive directory viewer / 
explorer. 

libiio 0.14  Hardware abstraction layer library via IIO 
module (Industrial Input / Output) for 
GNU/Linux. Mainly used to  

gtest 1.11.0 1.11.0 Unit test library. 

gflags 2.2.1  Command line parsing library. 

googlebenchmark 1.6.1 1.6.1 Benchmarking library 

{fmt} 8.1.1 8.1.1 Text formatting library 

iproute2 ss190197  Network support tools. 

 

5.2.6. Device Tree and Node Configuration 

In order to easily distinguish between various systems configurations we add to the device tree file 

parameter describing specific configuration of the board. An excerpt from a device tree is shown 

below. 

 

/{ 

    wzldevicemode { 

        mode = "trenz"; 

    }; 

}; 

 

 

On the running system, current [wzldevicemode] (WZL here stands for Wireless ZYNQ Lab) can be 

read form [/sys/firmware/devicetree/base/wzldevicemode/mode] file. In the case 

the node describing the current configuration changes, the file with the fixed name that contains the 

actual location of the current configuration is located in [/etc/radio/wzl-dev-mode-file-

location]. Such an approach ensures a single reference point to the actual location of the the file 

describing the device mode. 

Definition of the FPGA implementation of the custom made IP Core is also provided in the device tree 

(in the FPGA/amba_pl section). The entrance in the device tree for SimpleQPSK IP Core is shown 

below. 

 

/{ 

    amba_pl: amba_pl { 

        #address-cells = <1>; 

        #size-cells = <1>; 

        compatible = "simple-bus"; 

        ranges ; 

        SimpleQPSK_ip_0: SimpleQPSK_ip@43c00000 { 

            compatible = "xlnx,SimpleQPSK-ip-1.1"; 

            reg = <0x43c00000 0x10000>; 

        }; 

        // ... 

    }; 

}; 
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5.2.7. RF Configuration 

RF configuration files reside in the [/etc/radio] directory on the primary/root partition. An 

example listing of subset of its directories is shown below. 

 

/etc/radio/filters 

├── cubesat-filter-v0001.ftr 

├── cubesat-filter-v0002-1R1T-mode.ftr 

├── cubesat-filter-v0003-61dot44.ftr 

├── cubesat-filter-v0004-30dot72.ftr 

├── cubesat-filter-v0005-7dot68-pll-ad9364.ftr 

├── cubesat-filter-v0006-15dot36-pll-ad9364.ftr 

└── lte_5MHz.ftr 

 

/etc/radio/current/ 

├── ad9361-config.gflags 

├── config-dispatcher.gflags 

├── session-plan.yaml 

└── session-scheduler-config.gflags 

 

 

As can be deduced from the listing above, definition of FIR filters is in [/etc/radio/filters] 

directory. An example FIR filter definition file is show below. Its format is self-explanatory. 

 

$ head -12 /etc/radio/filters/lte_5MHz.ftr  

# Generated with AD9361 Filter Design Wizard 16.1.3 

# MATLAB 9.2.0.538062 (R2017a), 25-May-2018 16:55:22 

# Inputs: 

# Data Sample Frequency = 7680000 Hz 

TX 3 GAIN 0 INT 2 

RX 3 GAIN -6 DEC 2 

RTX 983040000 122880000 61440000 30720000 15360000 7680000 

RRX 983040000 122880000 61440000 30720000 15360000 7680000 

BWTX 4372840 

BWRX 4694670 

-5,-10 

0,-21 

... 
 

 

File [lte_5MHz.ftr] is used only for demonstration without disclosing actual details of the FIR 

filters used in the real system (mainly number and values of consecutive filter taps). 

 

5.2.8. Application Configuration Files 

Besides FIR filters configuration files [/etc/radio] directory also contains 

 

/etc/radio/current/ 

├── ad9361-config.gflags 

├── config-dispatcher.gflags 

├── session-plan.yaml 

└── session-scheduler-config.gflags 
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These files contain configurations of the custom applications and are described more thoroughly 

further in the document. The [/etc/radio/current] directory is in fact a soft link to the actual 

directory that contains configuration for a particular transmission side (TX or RX). 

5.2.9. Pre-O/S Components and Boot Sequence / Order 

Boot sequence on ARM-based hardware is divided into separate stages. Initially the FSBL (First Stage 

Boot Loader) prepares hardware, initializes CPUs and starts SSBL (Second Stage Boot Loader), which 

in our case is U-boot. Then SSBL/U-Boot decompresses the Linux kernel image and loads it together 

with a device tree describing the hardware and peripherals into memory. Next, the control is passed 

to the kernel, which boots itself, launches [/sbin/init] program that finalizes the Linux booting-

up and starts services and applications required for ensuring the whole system is in an operational 

state. 

5.2.9.1. FSBL 

Beside standard initialization, Xilinx’s FSBL allows configuring additional hardware via FSBL hooks. For 

example, patch provided by Trenz allows configuring SI5338 module. 

In the next three sections we show logs from FSBL, U-Boot and loading Linux kernel. These logs can 

be used as a reference for adjusting and / or fine-tuning different versions of the mentioned software 

components. They should be treated more as a guidance that a gold-standard when preparing 

custom solutions. 

5.2.9.1.1. FSBL Boot Logs 

FSBL loading logs are presented below. The manifest info section describes internals used to create a 

final [BOOT.BIN] file, it is not a necessary part and it is used solely for simplifying identification of 

the loaded bitstream. 

MANIFEST INFO: 

----------------------- 

HDF FILE:                 sr-cubesat-trenz-tx-v0011.hdf 

HDF GIT SHA:              8b041aee83724fadcd64867d266cabf8cdbfb005 

IP CORE REPORT PATH:      

d:/TrenzPrebuild/system/ip_lib/SimpleQPSK_ip_v1_1/doc/doc_arch_axi4_lite.jpg 

ZYNQ XTOOLCHAIN GIT SHA:  bad57fe9919f23f83c19aeeb71f0a3bb37e2e70a 

FSBL build date:          Tue, 14 Dec 2021 17:12:32 +0100 

----------------------- 

Xilinx Zynq First Stage Boot Loader (TE + PUT/TGM modified)  

Release 2018.2  Dec 14 2021-17:12:50 

 

 

5.2.9.2. SSBL / U-boot 

U-boot logs are only for the reference. 

U-Boot 2018.01 (Oct 11 2021 - 16:38:10 +0200) Xilinx Zynq ZC702 

 

Board: Xilinx Zynq 

Silicon: v3.1 

I2C:   ready 

DRAM:  ECC disabled 1 GiB 

MMC:   sdhci@e0100000: 0 (SD) 

** No device specified ** 

Using default environment 
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In:    serial@e0000000 

Out:   serial@e0000000 

Err:   serial@e0000000 

Board: Xilinx Zynq 

Silicon: v3.1 

Net:   ZYNQ GEM: e000b000, phyaddr ffffffff, interface rgmii-id 

eth0: ethernet@e000b000 

 

U-BOOT for petalinux 

 

ethernet@e000b000 Waiting for PHY auto negotiation to complete......... TIMEOUT ! 

Hit any key to stop autoboot:  0  

reading uEnv.txt 

486 bytes read in 12 ms (39.1 KiB/s) 

Loaded environment from uEnv.txt 

Importing environment from SD ... 

Running uenvcmd ... 

Copying Linux from SD to RAM... 

reading uImage 

4076304 bytes read in 238 ms (16.3 MiB/s) 

reading devicetree.dtb 

10683 bytes read in 17 ms (613.3 KiB/s) 

** No boot file defined ** 

 

5.2.9.3. Linux Kernel 

Linux kernel logs are only the reference. 

## Booting kernel from Legacy Image at 03000000 ... 

   Image Name:   Linux-4.14.0-xilinx-ge77ffb40e9a 

   Image Type:   ARM Linux Kernel Image (uncompressed) 

   Data Size:    4076240 Bytes = 3.9 MiB 

   Load Address: 00008000 

   Entry Point:  00008000 

   Verifying Checksum ... OK 

## Flattened Device Tree blob at 02a00000 

   Booting using the fdt blob at 0x2a00000 

   Loading Kernel Image ... OK 

   Loading Device Tree to 07ffa000, end 07fff9ba ... OK 

 

Starting kernel ... 

 

Booting Linux on physical CPU 0x0 

Linux version 4.14.0-xilinx-ge77ffb40e9a0-dirty (tgm@asus) (gcc version 8.3.0 

(GCC)) #1 SMP PREEMPT Mon Oct 25 18:38:15 CEST 2021 

CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d 

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache 

OF: fdt: Machine model: xlnx,zynq-7000 

Memory policy: Data cache writealloc 

cma: Reserved 16 MiB at 0x3f000000 

random: fast init done 

percpu: Embedded 16 pages/cpu @ef7cf000 s35084 r8192 d22260 u65536 

Built 1 zonelists, mobility grouping on.  Total pages: 260608 

Kernel command line: console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk 

rootfstype=ext4 rootwait 

PID hash table entries: 4096 (order: 2, 16384 bytes) 

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes) 

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes) 

Memory: 1012868K/1048576K available (6144K kernel code, 266K rwdata, 1672K 

rodata, 1024K init, 152K bss, 19324K reserved, 16384K cma-reserved, 24576) 

Virtual kernel memory layout: 

    vector  : 0xffff0000 - 0xffff1000   (   4 kB) 

    fixmap  : 0xffc00000 - 0xfff00000   (3072 kB) 

    vmalloc : 0xf0800000 - 0xff800000   ( 240 MB) 

    lowmem  : 0xc0000000 - 0xf0000000   ( 768 MB) 

    pkmap   : 0xbfe00000 - 0xc0000000   (   2 MB) 



Rafał Krenz, ed. Receiver Module CS.S7.Gen 

Version 1.0 21.02.2023 40 

    modules : 0xbf000000 - 0xbfe00000   (  14 MB) 

      .text : 0xc0008000 - 0xc0700000   (7136 kB) 

      .init : 0xc0900000 - 0xc0a00000   (1024 kB) 

      .data : 0xc0a00000 - 0xc0a42a80   ( 267 kB) 

       .bss : 0xc0a42a80 - 0xc0a68e44   ( 153 kB) 

Preemptible hierarchical RCU implementation. 

        RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2. 

        Tasks RCU enabled. 

RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2 

NR_IRQS: 16, nr_irqs: 16, preallocated irqs: 16 

efuse mapped to f0800000 

slcr mapped to f0802000 

L2C: platform modifies aux control register: 0x72360000 -> 0x72760000 

L2C: DT/platform modifies aux control register: 0x72360000 -> 0x72760000 

L2C-310 erratum 769419 enabled 

L2C-310 enabling early BRESP for Cortex-A9 

L2C-310 full line of zeros enabled for Cortex-A9 

L2C-310 ID prefetch enabled, offset 1 lines 

L2C-310 dynamic clock gating enabled, standby mode enabled 

L2C-310 cache controller enabled, 8 ways, 512 kB 

L2C-310: CACHE_ID 0x410000c8, AUX_CTRL 0x76760001 

zynq_clock_init: clkc starts at f0802100 

Zynq clock init 

clocksource: ttc_clocksource: mask: 0xffff max_cycles: 0xffff, max_idle_ns: 

537538477 ns 

sched_clock: 16 bits at 54kHz, resolution 18432ns, wraps every 603975816ns 

timer #0 at f080a000, irq=16 

sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 4398046511103ns 

clocksource: arm_global_timer: mask: 0xffffffffffffffff max_cycles: 0x4ce07af025, 

max_idle_ns: 440795209040 ns 

Switching to timer-based delay loop, resolution 3ns 

Console: colour dummy device 80x30 

Calibrating delay loop (skipped), value calculated using timer frequency.. 666.66 

BogoMIPS (lpj=3333333) 

pid_max: default: 32768 minimum: 301 

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes) 

Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes) 

CPU: Testing write buffer coherency: ok 

CPU0: thread -1, cpu 0, socket 0, mpidr 80000000 

Setting up static identity map for 0x100000 - 0x100060 

Hierarchical SRCU implementation. 

smp: Bringing up secondary CPUs ... 

CPU1: thread -1, cpu 1, socket 0, mpidr 80000001 

smp: Brought up 1 node, 2 CPUs 

SMP: Total of 2 processors activated (1333.33 BogoMIPS). 

CPU: All CPU(s) started in SVC mode. 

devtmpfs: initialized 

VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4 

clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns: 

19112604462750000 ns 

futex hash table entries: 512 (order: 3, 32768 bytes) 

pinctrl core: initialized pinctrl subsystem 

NET: Registered protocol family 16 

DMA: preallocated 256 KiB pool for atomic coherent allocations 

cpuidle: using governor menu 

hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers. 

hw-breakpoint: maximum watchpoint size is 4 bytes. 

zynq-ocm f800c000.ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0880000 

zynq-pinctrl 700.pinctrl: zynq pinctrl initialized 

e0000000.serial: ttyPS0 at MMIO 0xe0000000 (irq = 36, base_baud = 6249999) is a 

xuartps 

console [ttyPS0] enabled 

vgaarb: loaded 

SCSI subsystem initialized 

usbcore: registered new interface driver usbfs 

usbcore: registered new interface driver hub 

usbcore: registered new device driver usb 

media: Linux media interface: v0.10 
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Linux video capture interface: v2.00 

pps_core: LinuxPPS API ver. 1 registered 

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti 

<giometti@linux.it> 

PTP clock support registered 

EDAC MC: Ver: 3.0.0 

FPGA manager framework 

fpga-region fpga-full: FPGA Region probed 

Advanced Linux Sound Architecture Driver Initialized. 

clocksource: Switched to clocksource arm_global_timer 

NET: Registered protocol family 2 

TCP established hash table entries: 8192 (order: 3, 32768 bytes) 

TCP bind hash table entries: 8192 (order: 4, 65536 bytes) 

TCP: Hash tables configured (established 8192 bind 8192) 

UDP hash table entries: 512 (order: 2, 16384 bytes) 

UDP-Lite hash table entries: 512 (order: 2, 16384 bytes) 

NET: Registered protocol family 1 

RPC: Registered named UNIX socket transport module. 

RPC: Registered udp transport module. 

RPC: Registered tcp transport module. 

RPC: Registered tcp NFSv4.1 backchannel transport module. 

hw perfevents: no interrupt-affinity property for /pmu@f8891000, guessing. 

hw perfevents: enabled with armv7_cortex_a9 PMU driver, 7 counters available 

workingset: timestamp_bits=30 max_order=18 bucket_order=0 

jffs2: version 2.2. (NAND) (SUMMARY)  �© 2001-2006 Red Hat, Inc. 
bounce: pool size: 64 pages 

io scheduler noop registered 

io scheduler deadline registered 

io scheduler cfq registered (default) 

io scheduler mq-deadline registered 

io scheduler kyber registered 

dma-pl330 f8003000.dmac: Loaded driver for PL330 DMAC-241330 

dma-pl330 f8003000.dmac:        DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 

Num_Events-16 

 

 

[Trenz board version: TE0715-04-30-1I3.] 

 

[Final O/S version is not yet decide due to the lack of final PUT/Trenz boards.] 

 

5.3. Custom Made Applications 

5.3.1. Application: ad9361-config.run [TX + RX] 

[ad9361-config.run] application is used to configure AD9361 and the internal IP Core. The 

program is launched automatically at the system startup. To an extent it might be re-launched during 

the normal operational state of the system, although such an on-the-fly-re-configuration is strongly 

discouraged, as it may result in a non-optimal system state (e.g. not every AD9361 and IP Core 

internals could be properly configured). 

The configuration of [ad9361-config.run] application is kept in [/etc/radio/current/ 

ad9361-config.gflags] file. Note, however, that on the TX side, the location of the 

configuration file might be changed due to the availability of the pre-boot/post-boot configuration 

update mechanism. This mechanism is realized by an appropriate software and it is transparent from 

the point of view of [ad9361-config.run] application. 
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The example of the configuration file mentioned in this section is shown below. 

 

# Default configuration of AD9361 

 

# Note that config lines cannot have comments! 

 

### Cubesat specific configuration [BEGIN] 

 

# Without this option nothing in this section 

# is taken into account during configuration 

--conf_cubesat 

 

# Quadrature tracking 

--quad_track=ON 

 

# ENSM mode 

# Only TX and RX are support. 

# Anything else will lead to problems 

# Values: TX, RX 

--ensm_mode=TX 

 

### Cubesat specific configuration [END] 

 

 

### FPGA TRX config [BEGIN] 

 

# Turn ON/OFF FPGA TRX (TDD) 

--fpgatrx_enable=ON 

 

# Select code rate 

# Values: 0, 1, 2, 3, 4, 5, 6 

--code_rate=0 

 

# TX Data source 

# Values: 0, 1, 2 

--fpgatrx_tx_data_src=0 

 

# Length of frequency offset estimation preamble 

# Values: 0, 1, 2 

--fpgatrx_frequency_offset_estimation_preamble_length=2 

 

# Waiting time (in ms) before configuring / enabling FPGA TRX module 

--fpgatrx_enable_wait_time_ms=950 

 

# Wait time (in ms) after resetting the outer FPGA TRX IP CORE 

# We wait only if --fpgatrx_outer_ipcore_reset is present, i.e., 

# it is not uncommented. 

--fpgatrx_wait_after_outer_ipcore_reset_ms=45 

 

# Whether we do or do not reset the outer FPGA TRX IP CORE. 

# Comment if you want to disable resetting. 

--fpgatrx_outer_ipcore_reset 

 

 

### FPGA TRX config [END] 

 

# Direction 

--direction=TRX 

 

# FIR filter configuration 

--fir_filter_file=/etc/radio/filters/cubesat-filter-v0004-30dot72.ftr 

--fir_filter=ON 

 

 

# Extra register content 

# Format used is: reg1 << val1; reg2 << val2 

# NO QUOTES AROUND REGISTERS! 

# --extra_registers_content=0x035 << 0x0B 

 

 

# Carrier frequency in GHz 

# TX/RX filters on the small PUT radio boards have range 2120 -- 2170 [MHz] 

--c_frq=2.145 
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# Bandwidth in MHz 

#--bandwidth=15 

--bandwidth=28 

 

# Sampling rate in MSPS (mega samples per second) 

# 

#--sampling_rate=7.68 

--sampling_rate=40.816326 

 

# TX power gain in dB 

--tx_power_gain=-25 

 

 

# Logging capability 

--log 

 

# Disable ADI digital interface FIR tune 

# (tuning must be disabled on picozed/ADRV1CRR-FMC) 

--disable_digital_interface_tune_fir 

 

# To simulate the bahaviour without setting any AD9361 config 

# Uncomment the following line: 

--dry-run 
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6. Receiver implementation – “software oriented” version 

6.1. GnuRadio platform 

As explained in chapter 1.2.2, the baseband processing part of the receiver is implemented using 

GNURadio SDR software platform. It is a free and open-source software development toolkit that 

provides signal processing blocks to implement software radios. It can be used with readily-

available low-cost external RF hardware to create software-defined radios, or without hardware 

in a simulation-like environment. It is widely used in research, industry, academia, government, 

and hobbyist environments to support both wireless communications research and real-world 

radio systems. 

Figure 6.1 shows an example flowgraph within the GNURadio Companion visual editor: 

 

 
 

Fig. 6.1 Example flowgraph within the GNURadio Companion visual editor 

 

GNURadio is a framework that enables users to design, simulate, and deploy highly capable real-

world radio systems. It is a highly modular, "flowgraph"-oriented framework that comes with a 

comprehensive library of processing blocks that can be readily combined to make complex signal 

processing applications. GNURadio has been used for a huge array of real-world radio applications, 

including audio processing, mobile communications, tracking satellites, radar systems, GSM 

networks, Digital Radio Mondiale, and much more - all in computer software. It is, by itself, not a 

solution to talk to any specific hardware. Nor does it provide out-of-the-box applications for 

specific radio communications standards (e.g., 802.11, ZigBee, LTE, etc.,), but it can be (and has 

been) used to develop implementations of basically any band-limited communication standard. 

If specific processing blocks are not available in the libraries or out-of-tree modules, they can be 

easily implemented by the interested user, which is an important feature of GNURadio. 

To optimize performance of the software version Volk extension may be used (Vector-Optimized 

Library of Kernels). It speeds up the execution of signal processing blocks in GNURadio. It is a 

collection of low-level C++ routines that are optimized for vectorized execution on modern CPUs. 
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6.2. Receiver architecture 

The “software oriented” version of the receiver includes two main components: the hardware RF 

front-end and the software running on a PC. 

The developed receiver uses the USRP B210 from Ettus Research as the RF front-end responsible 

for receiving and digitizing the signals from the antenna system. It is connected via USB 3.0 

interface to the PC. The base-band signal samples are processed using the GNURadio platform and 

the DSP blocks developed specifically for the CBSR system, as described in the following sections. 

The “software oriented” receiver processes the signals “off-line”, i.e. the base-band signal samples 

are first saved in the files and next processed in a non-real-time manner on the PC. The decoded 

data stream is available with some delay (again, stored in the files), depending on the PC 

performance. 

The USRP B210 may be replaced with another SDR hardware, however the following requirements 

must be met: 

1. sampling rate – min. 30.72 Msps 

2. frequency range – min. 6 GHz 

3. GNURadio compatibility 

6.3. Custom-made processing blocks 

6.3.1. Receiver front-end 

The receiver front-end is designed to be simple to avoid any processing on live data, which might 

introduce delays or errors. The front-end consists of six blocks: options block, UHD USRP source 

block, file sink block, and parameter blocks for center frequency, channel gain value, and sampling 

rate (see Fig. 6.2). 

The parameter blocks are used to set the correct values for the variables used. Sampling rate can 

be one of the following values (MHz): 1.536, 1.92, 7.68, 15.36, 30.72. It is important to ensure that 

the sample rate is set correctly to avoid any issues with the collected data. Using an incorrect 

sample rate can result in aliasing or loss of information. Channel gain can be adjusted depending 

on the conditions. There should be no reason to modify center frequency, but it is implemented 

for completeness. 

The UHD USRP source block is used to connect to the physical device and collect the data. It is 

important to ensure that the device is configured correctly, and that the connection is stable to 

avoid any data loss. The center frequency for the receiver is set to 5.84GHz, and the default gain 

value is set to 60dB. These values can be adjusted if needed. 

The file sink block is used to store the collected samples. The program runs without a GUI to avoid 

any overflows while collecting data. The collected samples can be used for further processing or 

analysis offline, by reading the file and operating upon it. 

To use the receiver, set the sample rate variable to one of the available options and run the 

program. The UHD USRP source block will connect to the physical device, and the file sink block 

will store the collected samples. It is important to ensure that the sample rate is appropriate for 

the intended use case. Using a higher sample rate will result in larger files and longer processing 

times. 

All processing and analysis are performed offline, using the collected samples, to avoid any 

interference with collecting of the data. 
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Fig. 6.2 Receiver front-end 

 

To run the schematic we can either open GNURadio, modify values and run. It is also possible to 

automate the whole workflow by using a script that calls for the Python file with parameter 

values to be used. 

 

6.3.2. Matched Filtering 

In GNURadio, we can implement matched filtering using a series of signal processing blocks to filter 

the input signal and detect the presence of the known signal. Since all processing is done offline, 

the data is fetched from a file using File Source Block. The Throttle Block is used to control the rate 

at which the input signal is processed by the subsequent blocks, ensuring that the processing is 

done at a consistent and manageable rate. To filter the input signal and amplify the desired signal 

while removing unwanted noise, we use a series of Decimating FIR Filters. In this case, we use two 

filters with different numbers of taps: the first filter has a decimation of 1 and 17 taps, while the 

second filter has a decimation of 1 and 214 taps. After filtering, the Complex to Mag Phase Block 

is used to convert the complex signal to its magnitude and phase components. The resulting 

magnitude is then summed up with itself delayed by 256 samples for correlation. The 

frame_sync_ff block is responsible for matched filtering process. By using correlation magnitude 

and a set threshold we are able to get signal itself, frequency preamble and SOF (see Fig. 6.3). 

 

 

 

Fig. 6.3 Matched filtering 
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6.3.3. Time synchronization 

The time synchronization part is responsible for detection and marking of the start of data part in 

a radio frame, as well as for initial correction of the timing mismatch. The overall procedure follows 

the same procedure as for the hardware receiver, as described in Section Błąd! Nie można 

odnaleźć źródła odwołania.. Fig. 6.4 presents the time synchronization part of the software 

receiver. The input samples, coming from the matched filtering RRC block, are first filtered with a 

FIR filter with coefficients matching the Zadoff-Chu sequence used in the T_AMB part of the 

preamble, with the output of the filter fed into a magnitude and phase calculation block. The 

magnitude is used to construct a correlation metric used for frame detection, whereas the phase 

is used for initial coarse phase offset estimation. Furthermore, the magnitude squared of the 

correlation metric is used to perform timing offset estimation according to the Center of Gravity 

(CoG) method described in [5]. 

 

 

Fig. 6.4 Signal detection and time synchronization 

 

The core of the time synchronization subsystem is the frame_sync_ff function implementing a FSM 

responsible for marking of the start of the data part in a radio frame using a dedicated SOF tag and 

performing initial timing offset correction using a Farrow interpolating filter. Furthermore, the 

FDM also extracts and correlates the F_AMB preamble with a reference sequence to provide the 

input signal to the coarse frequency offset estimation part. The inputs, outputs and parameters of 

this block are described in Table 6.1, while the example of tagged output signal (Signal Out)is 

shown in Fig. 6.5. 

 

Table 6.1 Selected Inputs and outputs of frame_sync_ff 

Name Type Description 

Correlation Magnitude Input 
Received signal correlation metric used for signal 
detection and time synchronization 

Correlation Magnitude Sq Input 
Received signal correlation metric used (after being 
squared) for initial timing offset estimation using the CoG 
method 

Correlation Phase 
Input 

 
Received signal phase metric used for initial phase offset 
estimation 

Signal In 
Input 

 
Input complex signal, to be tagged with the found start of 
radio frame 
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Frequency preamble 
length 

Parameter 
The length of F_AMB  preamble used for frequency offset 
estimation (including the extension samples) 

Correlation threshold Parameter 
Minimum correlation magnitude value to consider a start 
of a radio frame to be found. 

Total data frame length Parameter 
Expected minimum number of samples of the data part of 
the radio frame to determine the point in which a search 
for a new frame will start. 

Signal Out Output 
Samples of the radio frame, including the indication of the 
start of data part of the radio frame in form of SOF tag. 

Frequency Preamble Output 
Samples of correlation of F_AMB  preamble with 
reference sequence used for coarse frequency 
synchronization 

SOF Output 
Signal indicating the detected start of data part of the 
radio frame – nonzero value for a sample where the start 
is identified. 

 

 

 

Fig. 6.5 Example of tagged output of frame_sync_ff block 

(SOF indicates start of data part of a radio frame) 

 

6.3.4. Coarse Frequency offset estimation 

The result of correlation of F_AMB preamble with the reference sequence is fed to the coarse 

frequency offset estimation part to find the initial CFO caused by Doppler effect and clock mismatch 

between the transmitter and the receiver, that still remains after the initial correction performed 

based on the satellite trajectory estimation. The structure of the coarse frequency offset estimation 

part is shown in Fig. 6.6 and comprises blocks performing calculation of the FFT magnitude and a 

CFO_estimator_ff custom block responsible for finding the maximum bin of Magnitude FFT and 

calculation of the CFO with the use of Fractional Fourier Coefficients, as described in [4]. The output of 

the CFO_estimator_ff block is then fed to the custom midamble extraction and processing block to 

perform CFO correction. 
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Fig. 6.6 Frequency offset estimation part of the “software receiver” 

 

The inputs, outputs and parameters of the CFO_estimator_ff block are described in Table 6.2. 

 

Table 6.2 Selected Inputs and outputs of CFO_estimator_ff 

Name Type Description 

F_AMB in Input 
Signal resulting from correlation of F_AMB with reference 
sequence (input to the coarse frequency synchronization 
part) 

FFT Mag in Input 
Magnitude FFT of the correlation of F_AMB with reference 
sequence 

Frequency preamble 
length 

Parameter 
The length of F_AMB  preamble used for frequency offset 
estimation (excluding extension samples – FFT size) 

Sampling Frequency Parameter Sampling frequency of the received signal 

Number of FFC 
calculcation iterations 

Parameter 
Number of iterations used in calculation of CFO using the 
FFC method 

CFO Output Found CFO estimate (relative to the sampling frequency) 

 

6.3.5. Midamble processing and frame disassembly part 

The main part of the synchronization functions is performed in the midamble processing and frame 

disassembly part, show in Fig. 6.6. It comprises three custom functional blocks: 

midamble_processing_ff, convertToQPSK_ff and subframes_to_files_ff. The role of 

midamble_processing_ff is to perform coding rate (CRI) detection, frame disassembly with extraction 

of midambles and fine timing, phase and frequency offset estimation and correction. This block 

processes the input signal tagged with SOF block, (coming from the frame_sync_ff output) using also 

the CFO estimated in the coarse frequency estimation part.  The inputs, outputs and parameters of the 

midamble_processing_ff block are described in Table 6.3, whereas the detailed functionality of this 

block is given in the following subsections. 

 



Rafał Krenz, ed. Receiver Module CS.S7.Gen 

Version 1.0 21.02.2023 50 

 

Fig. 6.6 Midamble processing and frame disassembly part of the “software receiver” 

 

Table 6.3 Selected Inputs and outputs of midamble_processing_ff 

Name Type Description 

Signal in Input 
Samples of the radio frame, including the indication of the 
start of data part of the radio frame in form of SOF tag 
(output of frame_sync_ff block) 

CFO in Input 
Initial (coarse) estimate of CFO from CFO_estimator_ff 
block 

Length of F_AMB + tail of 
T_AMB 

Parameter 
The expected number of samples used as a tail of T_AMB 
and F_AMB  sequence, to be accounted for in CFO 
correction process. 

Number of midambles for 
CRI search 

Parameter 
Number of midambles (P_AMBs) used for averaging in CRI 
search procedure 

Minimum frame length Parameter Minimum expected number of samples of a radio frame 

Length of P_AMB Parameter Number of samples of the P_AMB midamble sequence. 

Length of data blocks 
between midambles 

Parameter 
Size of the data block between two subsequent 
midambles (P_AMBs) 

Number of subframes in 
radio frame 

Parameter 
Expected number of subframes (codewords) contained in 
a single radio frame 

Data Out Output 
Output signal (data only) with tags indicating the start of 
each subframe (codeword) and the identified CRI 

CRI Output Output indicating the estimated CRI values 

 

The output of midamble_processing_ff block is a complex signal comprising only the data samples of 

the received radio frame, with tags indicating start of each separate subframe (codeword) and the 

identified code rate (CRI). While these signal consists of OQPSK symbols, it is fed to the 

convertToQPSK_ff block, where it is downsampled twice, with the symbols converted from OQPSK 

form to standard QPSK constellation.  Finally, the output tagged QPSK signal, with example presented 

in Fig. 6.7 and the constellation shown in Fig. 6.8, respectively, is fed to the subframes_to_files_ff block, 

where each subframe (codeword) complex samples are stored in individual data files used as an 

interface to the demodulation and decoding part of the receiver. This last block makes use of a single 

parameter which is a specification of the common prefix used for files to store the data subframes 

(files are saved with format prefix + subframe_number). 
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Fig. 6.7 Example of the tagged QPSK data sequence being input to the 

subframes_to_files_ff block. 

 

 

Fig. 6.8 Example of the received QPSK data constellation. 

 

6.3.5.1. Coding rate evaluation 

There are 8 possible sequences to be used as P_AMB midamble, with 7 representing the differend 

coding rate used, and the additional one used to indicated end of transmission (EoT). All these 

sequences result from a cyclic shift of the same base Zadoff-Chu sequence, with different shift 

values applied. Therefore, in the midamble_processing_ff block the received midambles are 

correlated with all 8 possible versions of the reference midamble, and the version (shift) resulting 

in the highest correlation metric is assumed to be the used one – representing the applied coding 

rate. In order to mitigate the impact of noise on this estimation, the results of correlation of N 

consecutive midambles are averaged, where N is the value specified using Number of midambles 

for CRI search parameter of the midamble_processing_ff block. The identified index of coding rate 

(CRI) is then signaled using the dedicated output of this block, as well as added to the output 

symbols sequence in form of tags (CRI tag in Fig. 6.7). 

 

6.3.5.2. Radio frame disassembly 

Radio frame disassembly is performed by the midamble_processing_ff block based on the 

detection of the SOF tag, inserted to the input sequence in frame_sync_ff block and indicating the 

start of the first midamble (P_AMB) in the radio frame. The sample corresponding to the SOF tag 

is considered to be the first midamble sample. Then a counter is started that counts the 

consecutive samples and categorizes them to one of the following sets: 

 Midamble (P_AMB) samples – these are the samples where the value of counter is less 

than the parameter Length of P_AMB. 

 Data samples – those where the counter value is greater than or equal Length of P_AMB. 
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The counter is reset to 0 every (Length of P_AMB + Length of data blocks between midambles) 

samples. This procedure continues for the duration of the whole radio frame, that depends on the 

expected length of a data subframe (determined based on CRI value – found as described in 

6.3.5.1) and number of data subframes (codewords) contained in a radio frame (Number of 

subframes in radio frame parameter). 

Only the data samples are later output from the frame_sync_ff block, with the start of consecutive 

subframes (codewords) marked using subframe tag. 

 

6.3.5.3. Fine timing, phase and frequency offset estimation 

The final correction of the received data is performed in  the midamble_processing_ff block. It 

consists of: 

 Fine timing error tracking – performed using the CoG method [5], with the results of 

midamble correlation used to find the remaining timing error. The aim of this procedure 

is to correct the eventual shift in timing resulting from mismatch of the oscillators at the 

transmitter and the receiver. The timing error is then corrected using Farrow interpolating 

filter. 

 Fine phase and frequency offset estimation – found as the gradient of the change of phase 

offset of subsequent midambles (P_AMBs). For the purpose of its estimation the results of 

correlation of subsequent midambles are used, with the residual remaining CFO estimated 

based on averaging of results obtained for consecutive midambles pairs. This estimated 

phase and frequency offset is then used along with the coarse CFO estimate from 

CFO_estimator_ff block to correct the phase of the data symbols forming the output of 

the midamble_processing_ff block. The exact procedure is described in [4]. 

 

6.3.6. Demodulation 

After successful phase and frequency offset estimation, the data are passed to the demodulation 

block. The role of this block is to calculate the LLR (log-likelihood ratio) values that subsequently 

fed the decoding block. The demodulation is performed according to the formula: 

𝑙𝑜𝑔 (
𝑃(𝑏 = 0|𝑟)

𝑃(𝑏 = 1|𝑟)
) =

𝑑1
2 − 𝑑0

2

𝑁0
 

where 𝑑𝑖 = |𝑟𝑘 − 𝑠𝑖|, rk  represents the received signal and si represents the constellation points. 

6.3.7. Decoding 

The decoding process consists of three separate stages. The first stage is a Rate De-Matching, the 

second stage is iterative decoding and the third step is CRC verification. Each of the stages is 

realized with a separate block. 

The decoding process starts with rate de-matching. Its role is to match the number of transmitted 

bits to the size of the unpunctured codeword. It is caused by the fact that in the system a set of 

different CRI can be used, and each CRI carries a different number of coded bits.  

The information generated by the Rate De-Matching is fed to the iterative decoder. Within the 

system, the LTE-compliant turbo code is used with the maximal number of 8 iterations. For a single 

SISO decoder, a Max-Log-MAP decoding algorithm was assumed. 
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After the decoding process frame is subjected to CRC verification. Its role is to decide whether the 

decoding process was successful. Moreover, CRC verification is performed after each iteration. 

 

6.3.8. Data packing 

Data packing is the last block in the software receiver chain. Its role is to prepare a file (or set of 

files) that contains all the information transmitted via the transmission link. However, decoded 

data is not the only information stored in the files, the additional information is the following: 

 CRI index – contains information on what CRI was used to transmit the data,  

 The number of iterations – this information indicates how many decoding iterations were 

used in the decoding process to decode the obtained codeword. It needs to be mentioned 

that in the case of a correctly decoded codeword, the number of iterations used can be 

lower or equal to the maximal number of iterations allowed (8 is assumed as the maximal 

number of iterations). In the case of erroneous decoding, this field must contain the 

maximal number of decoding iterations. 

 Information if codeword was decoded correctly – this field informs if the data stored in 

the file are valid (information obtained via CRC check); if not data retransmission will be 

requested by higher protocol layers. 
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