
Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 1

The CBSR receiver is one of the main components of the ground segment of the communication

system (i.e. ground station). It is implemented using Software Defined Radio technique, however,

both “hardware oriented” and “software oriented” versions will be developed for system flexibility.

In this document the electrical and mechanical design of all versions are discussed along with

implementation aspects.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 2

Contents

List of acronyms... 4

1. Module Characteristics .. 5

1.1. General Parameters... 5

1.2. Implementation ... 5

1.2.1. “Hardware oriented” version .. 5

1.2.2. “Software oriented” version ... 5

2. Module Electrical Design - “hardware oriented” version ... 6

2.1. ADRV9361 based receiver ... 6

2.2. Xilinx Zynq Mini-ITX based receiver .. 9

3. Module Electrical Design - “software oriented” version ... 11

3.1. USRP B210 hardware platform [] .. 11

4. Receiver implementation – PL part (FPGA) for “hardware oriented” version 12

4.1. Simulink model .. 12

4.1.1. Matched Filtering .. 16

4.1.2. Time synchronization .. 16

4.1.3. Coarse Frequency offset estimation ... 17

4.1.4. Coding rate evaluation .. 18

4.1.5. Radio frame disassembly ... 19

4.1.6. Fine phase and frequency offset estimation ... 21

4.1.7. Demodulation .. 22

4.1.8. Decoding .. 22

4.1.9. Data packing .. 23

4.2. Custom-made IP cores... 24

4.2.1. Introduction ... 24

4.2.2. Reference design customization ... 24

4.2.3. The use of Simulink HDL Workflow Advisor .. 27

4.2.4. Vivado project details .. 30

5. Receiver implementation – PS part (software) for “hardware oriented” version 32

5.1. TX vs RX – disambiguation ... 32

5.2. Operating System .. 32

5.2.1. Cross-compiling Tools .. 32

5.2.2. Shell ... 32

5.2.3. Kernel Configuration ... 32

5.2.4. FPGA Driver and Kernel Modules .. 33

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 3

5.2.4.1. Driver Attributes Description .. 33

5.2.4.2. Kernel Modules Loading .. 33

5.2.4.2.1. Modules configuration file .. 35

5.2.5. Libraries and Tools ... 35

5.2.6. Device Tree and Node Configuration .. 36

5.2.7. RF Configuration .. 37

5.2.8. Application Configuration Files ... 37

5.2.9. Pre-O/S Components and Boot Sequence / Order .. 38

5.2.9.1. FSBL ... 38

5.2.9.1.1. FSBL Boot Logs ... 38

5.2.9.2. SSBL / U-boot ... 38

5.2.9.3. Linux Kernel ... 39

5.3. Custom Made Applications ... 41

5.3.1. Application: ad9361-config.run [TX + RX] ... 41

6. Receiver implementation – “software oriented” version ... 44

6.1. GnuRadio platform .. 44

6.2. Receiver architecture .. 45

6.3. Custom-made processing blocks ... 45

6.3.1. Receiver front-end ... 45

6.3.2. Matched Filtering ... 46

6.3.3. Time synchronization ... 47

6.3.4. Coarse Frequency offset estimation .. 48

6.3.5. Midamble processing and frame disassembly part .. 49

6.3.5.1. Coding rate evaluation ... 51

6.3.5.2. Radio frame disassembly ... 51

6.3.5.3. Fine timing, phase and frequency offset estimation .. 52

6.3.6. Demodulation .. 52

6.3.7. Decoding .. 52

6.3.8. Data packing .. 53

Bibliography ... 54

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 4

List of acronyms

BB Base-band

CBSR C-band Satellite Radio

DAC Digital to Analog Converter

DMA Direct Memory Access

FSM Finite State Machine

NCBR Narodowe Centrum Badań I Rozwoju

PA Power Amplifier

PN Pseudorandom Noise

PUT Poznań University of Technology

SDR Software Defined Radio

SR SatRevolution S.A.

SoM System-on-Module

SoC System-on-Chip

t.b.d to be determined

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 5

1. Module Characteristics

1.1. General Parameters

The CBSR receiver has been designed as the main component of the Cubesat ground station which

was developed and implemented at PUT.

Based on the system specification presented in [1], the electrical parameters of the receiver are the

following:

 carrier frequency – user selectable between 5500 MHz and 6000 MHz, default 5840 MHz

 channel bandwidth – user selectable: 1 MHz, 1.25 MHz, 5 MHz, 10 MHz, 20 MHz

 modulation type - digital (quadrature) - OQPSK

 channel coding – Turbo, user selectable code rate: 0.19 – 0.91

 data/control interface – RS-232, Ethernet

1.2. Implementation

The receiver has been implemented using SDR technique, however, both “hardware oriented” and

“software oriented” versions will be developed for system flexibility.

1.2.1. “Hardware oriented” version

In “hardware oriented” version most of the receiver functionality is implemented using Xilinx

Zynq7000 SoC based hardware platforms. Using the receiver Simulink model, developed in the

project, the proprietary IP-cores are generated for Zynq7000 Programmable Logic (PL). Zynq7000

Processing System (PS) runs Linux applications which exchange data with the PL and perform non-

time-critical operations.

The receiver implementation has been developed for two hardware platforms:

 ADRV9361 (a.k.a PicoZed) SoM featuring AD9361 transceiver IC and Zynq7035 device

 Mini-ITX board featuring Zynq7100 device with AD-FMCOMMS3 AD9361 evaluation module

attached via FMC-LPC connector

The “hardware oriented” version performs real-time processing of the received signal, delivering the

transmitted data “on-line” for the user in the ground station.

1.2.2. “Software oriented” version

In “software oriented” version most of the receiver functionality is implemented using a high-

performance PC running the software receiver based on GnuRadio platform. The RF part uses the off-

the-shelf USRP B210 SDR hardware platform for signal reception and analog-to-digital conversion,

attached to the PC via USB interface.

The “software oriented” version performs non-real-time processing of the received signal, delivering

the transmitted data “off-line” for the user in the ground station.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 6

2. Module Electrical Design - “hardware oriented” version

An efficient SDR implementation of the receiver requires application of an FPGA device. For this

purpose a Xilinx ZYNQ System-on-Chip device, which combines dual-core ARM Cortex-A9 processor

with the FPGA and a choice of interfaces was selected [2]. Most of the BB processing blocks are

implemented in the FPGA, while the ARM processor is used for system control and management

functions.

2.1. ADRV9361 based receiver

ADRV9361 is a Software Defined Radio (SDR) that combines the Analog Devices AD9361 integrated

RF Agile Transceiver™ with the Xilinx Z7035 Zynq®-7000 All Programmable SoC in a small system-on-

module (SoM) footprint suitable for end-product integration.

The key features of the module [3] are listed below:

 Low-power - Designed with a -2LI version of the Zynq SoC (low power, mid speed, industrial

temp), DDR3L, and high-efficiency voltage regulators with margining capability to scale

power with performance. Built-in sequencing and monitoring make it easy to power to the

module.

 High bandwidth data connectivity - Move data quickly with dual Gigabit Ethernet, USB2.0,

four 6.6 Gb/s serial links (PCIe x4, SFP+, others), and high-speed LVDS I/O for custom

interfaces.

 Wideband, frequency agile RF - Uses the AD9361 to provide a highly integrated radio that

enables wideband 2x2 MIMO receive and transmit paths from 70 MHz to 6.0 GHz with

tunable channel bandwidth <200kHz to 56MHz.

 Programmable SoC - Embedded processing with the Zynq Z-7035 SoC provides a Dual ARM®

Cortex™-A9 MPCore™ running at 800MHz, with built in peripherals like USB, Gigabit

Ethernet, and memory interfaces.

 Small form factor - 100mm x 62mm footprint.

 Production-ready module - System-on-Module designed for immediate prototype and quick

integration in your end application. Industrial temperature rated and tested against MIL-STD

202G methods for Thermal, Vibration, and Shock.

 Operating systems - Comes with Analog Devices Linux reference design for Zynq, bootable

from an SD card. Also supports Linux, Android, FreeRTOS, eCos, VxWorks, and others not

listed here.

 Development tools - A broad range of SDR prototype and development environments are

supported, including Analog Devices Linux Applications, and MATLAB® and Simulink® for data

streaming and Zynq targeting.

 Open-source code - Analog Devices provides precompiled reference designs on their PicoZed

SDR wiki page and a source code support package hosted on Github, including the HDL and

software code (except non-ADI).

ADRV9361 module block diagram is depicted in Fig. 2.1 and Fig. 2.2 shows its layout.

ADRV9361 can not work as a stand-alone module, it requires a corresponding carrier card. For this

purpose the ADRV1CRR-FMC (a.k.a AES-PZSDRCC-FMC-G) carrier is used. The card gives designers

access to a wide variety of peripherals and user I/O required to evaluate and develop with ADRV9361

SoM. The carrier card provides all necessary SoM power, reset control, and Zynq SoC I/O pin

accessibility through the board-to-board (B2B) micro headers (see Fig. 2.3, 2.4).

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 7

Fig. 2.1 ADRV9361 SoM block diagram

Fig. 2.2 ADRV9361 SoM device layout

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 8

Fig. 2.3 ADRV1CRR-FMC carrier card block diagram

Fig. 2.4 ADRV1CRR-FMC carrier card layout

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 9

2.2. Xilinx Zynq Mini-ITX based receiver

The Xilinx Zynq Mini-ITX Development Kit provides a complete development platform for designing

and verifying applications based on the Xilinx Zynq-7000 All Programmable SoC family. Available with

the Zynq XC7Z045-2FFG900 or the XC7Z100-2FFG900 device in a small Mini-ITX form factor, the kit

enables designers to prototype high-performance designs with ease, while providing expandability

and customization through the FMC HPC expansion slot. The Zynq Mini-ITX development board

features consist of:

 Xilinx Zynq Z7100 SoC

 1GB PS DDR3 SDRAM

 1GB PL DDR3 SDRAM

 32MB of QSPI Flash

 8KB of I2C EEPROM

 Real-Time Clock

 10/100/1000 Ethernet Interface

 USB-UART Interface

 microSD Card Interface

 USB 2.0 4-Port Hub

 PCIe x4 Root-Port (x16 physical Slot)

 SATA-III Interface

 FMC HPC Slot (VADJ of 1.8V, 2.5V, or 3.3V)

 SFP Socket

 LVDS Touch Panel Interface

 HDMI Interface

 Audio Codec

 User LEDs and Switches

 Programmable LVDS Clock Source (GTX reference clock)

 200 MHz LVDS Oscillator (system clock)

 JTAG Header

The Mini-ITX Development Kit block diagram is depicted in Fig. 2.5.

The on-board FMC slot is used to connect to the AD-FMComms3-EBZ transceiver board. It provides

AD9361 based RF platform, a highly integrated radio that enables wideband 2x2 MIMO receive and

transmit paths from 70 MHz to 6.0 GHz with tunable channel bandwidth <200kHz to 56MHz.

The Mini-ITX platform, including the RF part, is shown in Fig. 2.6. The boards are mounted in a Mini-

ITX format enclosure, together with a power supply.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 10

Fig. 2.5 Mini-ITX Development Kit block diagram

Fig. 2.6 Mini-ITX SDR platform

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 11

3. Module Electrical Design - “software oriented” version

The “software oriented” receiver is designed for low-cost applications, e.g. at supporting ground

stations which do not require on-line decoding of the transmitted data.

3.1. USRP B210 hardware platform []

The USRP B210 provides a fully integrated, single-board, Universal Software Radio Peripheral

(USRP™) platform with continuous frequency coverage from 70 MHz – 6 GHz. Designed for low-cost

experimentation, it combines the AD9361 RFIC direct-conversion transceiver providing up to 56MHz

of real-time bandwidth, an open and reprogrammable Spartan6 FPGA, and fast SuperSpeed USB 3.0

connectivity with convenient bus-power. Full support for the USRP Hardware Driver™ (UHD)

software allows you to immediately begin developing with SDR software environment, e.g. GNU

Radio.

The integrated RF frontend on the USRP B210 is designed with the new Analog Devices AD9361, a

single-chip direct-conversion transceiver, capable of streaming up to 56 MHz of real-time RF

bandwidth. The B210 uses both signal chains of the AD9361, providing coherent MIMO capability.

Onboard signal processing and control of the AD9361 is performed by a Spartan6 XC6SLX150 FPGA

connected to a host PC using SuperSpeed USB 3.0. The USRP B210 real time throughput is

benchmarked at 61.44MS/s quadrature, providing the full 56 MHz of instantaneous RF bandwidth to

the host PC for additional processing.

Since the receiver uses a single receive channel, a simpler (and cheaper) USRP B200 platform can be

used without any degradation.

Fig. 2.7 USRP B210 hardware platform

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 12

4. Receiver implementation – PL part (FPGA) for “hardware oriented”

version

4.1. Simulink model

The receiver implementation in FPGA is prepared similarly to the transmitter with the help of

Matlab/Simulink and its HDL Coder toolbox. In Fig. 4.1 the receiver block inputs and outputs are

presented, the relevant ones are described in Table 4.1.

Fig. 4.1 Receiver block

Table 4.1 Inputs and outputs of receiver block

Name Type Description

rx_I/rx_Q Input Receivers’ in-phase and quadrature component samples

valid_in Input Valid signal for ADC samples

ENABLE_REG
Input/
Output

Register that stores i.a. a value that enables/disables the
receiver. When its state is high, the signal can be
received, when it’s low the receiver will stop collecting
samples on its input

RADIO_CONFIG_REG
Input/
Output

A register used to set:

 the transmission mode (described in [3])

 the roll-off factor of the shaping RRC filter. There
are 2 settings available i.e. 0 and 1.

 the length of the frequency offset estimation part
of the preamble (described in [3])

NUM_RF_SUBFRAMES_REG
Input/
Output

Sets the number of subframes in each radio frame.

data_out Output 32-bit data words

valid_out Output Indication whether output data is valid

SUBFRAME_COUNT_REG Output The number of received subframes

SUBFRAME_ERR_COUNT_REG Output The number of erroneous subframes

BIT_COUNT_REG Output
The number of received bits in transmission modes

1 and 2

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 13

BIT_ERR_COUNT_REG Output
The number of erroneous bits in transmission modes

1 and 2

In Fig. 4.2 and Fig. 4.3. the general structure of the receiver is presented. The main components of the

receiver are shown and described in detail in the subsequent sections.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 14

Fig. 4.2 Overview of the receiver Simulink schematics - part 1

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 15

Fig. 4.3 Overview of the receiver Simulink schematics - part 2

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 16

4.1.1. Matched Filtering

The operations performed in the receiver are the inversion of those performed in the transmitter. The

first part of the receiver (depicted in Fig. 4.4.) is responsible for filtering received signal samples with

a matched RRC filter. The output samples from the filter are stored in an input buffer (Input Buffer

block in Fig. 4.2) but also fed into a signal detection and time synchronization block named

TSyncPreambleDetection

Fig. 4.4 Matched filtering

4.1.2. Time synchronization

The internal structure of the detection and time synchronization block is shown in Fig. 4.5. The input

samples are first filtered with a FIR filter with coefficients matching the Zadoff-Chu sequence used in

the T_AMB part of the preamble. The output of the filter is fed into a magnitude and phase calculation

block. The magnitude is used to construct a correlation metric used for signal detection and time

synchronization, whereas the phase is used for initial coarse phase offset estimation. The main part of

the synchronization subsystem is the Sync Machine FSM (Fig. 4.6). The inputs and outputs of this block

are shown and described in Table 4.2.

Fig. 4.5 Signal detection and time synchronization

The main task of the Sync Machine block is to find the address in the input buffer for which the

correlation metric is the highest (assuming that it is higher than the threshold). When the peak in

correlation value has been found the Sync Machine starts the process of reading samples from the

input buffer. The output from the buffer is fed into several subsystems that perform operations such

as coarse frequency offset estimation and coding rate estimation, simultaneously/

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 17

Fig. 4.6 Sync Machine FSM

Table 4.2 Selected Inputs and outputs of Sync Machine

Name Type Description

corr_in Input
Received signal correlation metric used for signal detection
and time synchronization

addr_in Input Current write address in the input buffer

phase
Input

Received signal phase metric used for initial phase offset
estimation

th
Input

A threshold value for signal detection

F_AMB_LEN Input
The length of the preamble used for frequency offset
estimation

cri_ready Input Indication whether the coding rate has been evaluated

read_num_sampels Input
Number of samples to read from the input buffer before the
next signal detection window

cont_preamble_en Input
Used to enable continuous preamble mode in the
synchronization block

enabled Input
A line used to enable/disable synchronization is related to
the enable signal of the receiver

read_addr_out Output Current read address from the input buffer

valid Output
A signal indicating that the output samples of the input
buffer are valid

sync Output

A signal indicating that radio frame has been detected. The
samples output by the input buffer when this signal is high
are fed into a coarse frequency offset estimation block.
These samples belong to the F_AMB part of the preamble.

sel_phase Output Initial coarse phase offset estimate

4.1.3. Coarse Frequency offset estimation

The first F_AMB_len samples from the input buffer are used for coarse frequency offset estimation.

The goal of this subsystem is to mitigate the effect of a frequency shift. The main source of this shift is

the Doppler effect, which impact is also mitigated outside of the receiver implementation, and this

subsystem was designed to reduce the impact of any leftover shift that wasn’t already compensated.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 18

The internal structure of the coarse frequency offset estimation is shown in Fig. 4.7. Its operation is

based on performing FFT on F_AMB preamble samples. The index of the maximum magnitude value

of the FFT outcome and the F_AMB preamble samples are used for calculating metrics used for

frequency offset estimation. The detailed algorithm was described in the report [4].

Fig. 4.7 Frequency offset estimation

4.1.4. Coding rate evaluation

The information about the coding rate used in the transmitter is carried by a phase midamble. Each

coding rate has its own form of midamble created by performing a cyclical shift on a base Zadoff-Chu

sequence. In order to correctly disassemble the received radio frame the correct value of the coding

rate used in the transmitter is essential. Hence, the coding rate has to be known before we can process

the radio frame. The block responsible for evaluating the coding rate is shown in Fig. .4.8. It operates

on the samples coming from a midamble filter subsystem shown in Fig. 4.9. The filter subsystem

performs filtering with base Zadoff-Chu coefficients and the magnitude of the filtered samples is used

in the CRI evaluation subsystem. In the evaluation, we search for the sample index for which the

magnitude is maximal. This index is fed into a post-processing system responsible for converting it to

the coding rate indicator in the range from 0 to 7 (where values 0-6 denotes valid coding rates and

value 7 denotes the EoT frame).

Fig. 4.8 Coding rate evaluation

Fig. 4.9 Midamble filter

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 19

4.1.5. Radio frame disassembly

The samples coming from the input buffer are stored in dedicated queues (in the frequency offset

correction block), where they wait for the coding rate evaluation and coarse frequency offset

estimation to finish their processing. There is one queue for the data symbols and one for

midamble symbols. The write operation to each of the queues is managed by a controller depicted

in Fig. 4.10. The inputs and outputs of this controller are described in Table 4.3.

Fig. 4.10 Write controller

Table 4.3 Inputs and outputs RxWriteControl block

Name Type Description

write_en Input
A line indicating that samples are valid and can be written to
processing queues

num_phase_midamble Input
A line that specifies the number of phase midambles in
subframe (evaluated based on coding rate)

num_subframes Input Number of subframes in radio frame

eot Input
A line indicating that EoT frame has been received and no
further write operation is allowed until the next reception
session.

write_data Output
A line indicating that the currently processed sampes should
be written to data samples queue

write_midamble Output
A line indicating that the currently processed sampes should
be written to midamble samples queue

The evaluated coding rate value is fed to a EoT Detector and CRI verifier controller (Fig. 4.11), which

task is to analyze the coding rate value and recognize the EoT frame and also check whether the coding

rate value is in the allowed range of 0 to 6. The inputs and outputs of the controller are described in

Table 4.4.

In the case that the EoT frame is recognized the controller indicates the fact by setting the eot_flag

which will disable some parts of the receiver until the next reception session is started. If the controller

detects that the coding rate value is outside the allowed range an override_cri signal is set which will

cause the receiver to use the default coding rate value which is 0. The frame where the coding rate

evaluation is incorrect will be lost.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 20

Fig. 4.11 EoT detector and coding rate verifier

Table 4.4 Inputs and outputs of EoT detector and coding rate verifier block

Name Type Description

cri_val Input Currently estimated coding rate value

cri_valid Input A line indicating that the cri_val is valid

flush_end Input A line indicating that the EoT procedure has been completed

override_end Input
A line used to reset coding rate override in the case that the
coding rate evaluation resulted in invalid value

rx_enable Input An indication whether the receiver is enabled.

override_flag Output
A line indicating that the evaluated coding rate value is
invalid and should be replaced with default value of 0

eot_flag Output
A line indicating that the EoT frame has been detected used
to start the EoT procedure

When the frequency offset estimation and coding rate evaluation are done, the samples stored in the

data and midamble queues can be read and coarse frequency correction can be performed on these

samples. The read process is controlled by the RxFrameControl block depicted in Fig. 4.12. The inputs

and outputs of the controller are described in Table 4.5.

The samples coming from the midamble queue are fed into a midamble filter subsystem described in

section 4.1.4, where the magnitude and phase of the filtered samples are calculated. The results are

fed into a fine frequency and phase offset estimation block.

The samples coming from the data symbols queue are fed into fine frequency and phase offset

correction block where the offsets are compensated and the result is fed into a demodulator.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 21

Fig. 4.12 RxFrameControl block

Table 4.5 Inputs and outputs of RxFrameControl block

Name Type Description

process_en Input
A line indicating that coarse frequency offset estimation has
been completed and the ramining part of the received
samples can be processed

num_phase_midamble Input
A line that specifies the number of phase midambles in
subframe (evaluated based on coding rate)

num_subframes Input Number of subframes in radio frame

d_sym_valid Output
A line indicating that the data samples should be read from
processing queues

ph_sym_valid Output
A line indicating that the midamble samples should be read
from processing queues

read_buf Output
A line indicating that samples should be read from
processing queues

subframe_end Output A line indicating the end of a subframe

4.1.6. Fine phase and frequency offset estimation

The fine phase and frequency offset estimation subsystem is depicted in Fig. 4.13. It accepts magnitude

and phase values calculated by the midamble filter described in section 4.1.4. The offsets are calculated

for the phase value for which the magnitude had a maximal value. The exact algorithm is described in

the report [4].

Fig. 4.13 Fine phase and frequency offset estimation

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 22

4.1.7. Demodulation

The demodulation of the OQPSK symbols is performed in the subsystem shown in Fig. 4.14. The OQPSK

symbol is first converted to a QPSK equivalent by delaying the real component of the symbol by half

the base sampling rate of the modulated signal. The QPSK symbols are then mapped to a likelihood

metrics that can be used in the decoder.

Fig. 4.14 demodulation subsystem

4.1.8. Decoding

The decoding subsystem is depicted in Fig. 4.15. It consists of a set of parallel turbo decoders. The need

for more than one decoder is due to the fact that the processing delay of a single instance is too high

and a single decoder would not be able to decode all the received subframes in time. Based on a

thorough analysis the number of required decoders was set to 6. The decoders are run in a sequential

manner and are configured in such a way that the output from each does not overlap with others,

hence there is no need to add more than one CRC verification block. The CRC verification block is

responsible for checking the CRC of the received data and indicating whether it is correct or not. The

data with the error flag is discarded in transmission mode 0. However, for transmission mode 1 the

erroneous data is analyzed and error statistics are gathered.

Fig. 4.15 Decoding subsystem

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 23

4.1.9. Data packing

The final step in the receiver processing chain is the data packing operation. The block responsible for

this task is depicted in Fig. 4.16. Its main goal is to convert bits into 32-bit words that are accepted by

the software. In addition, this block is also responsible for detecting fake subframes which are either

discarded in transmission mode 0 or analyzed for bit errors in transmission mode 1.

Fig. 4.16 Data packing subsystem

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 24

4.2. Custom-made IP cores

4.2.1. Introduction

The FPGA-based signal processing routine, created with the aid of MATLAB HDL Coder, is encapsulated

into a user-developed Vivado IP core. To incorporate a receiver IP core into a Vivado block diagram, a

Matlab HDL workflow coder is used. The workflow operates according to a given so-called reference

design, which specifies the Vivado block diagram, the way in which the custom-made IP core is merged

with it, and the board pin assignment (constraint file). The reference designs have a form of TCL scripts.

In the current project, a reference design by Analog Devices, dedicated to Mini-ITX device, equipped

with Xilinx Zynq®-7000 All Programmable SoC XC7Z045 and an FMC2/3/4 transceiver card with

AD9361, is used as a baseline. The device used in the project is Mini-ITX with XC7Z100 plus the

FMC2/3/4 card, so the reference design requires some customization. Another reason to do that is the

fact that the original reference design seems to be most accurate in the cases where the IQ samples

(for 2 receiver channels) are conveyed through PL directly to PS since there are four interleaved 16-bit

data lines on the PL to PS interface. Signal processing in PL is an option (the user-specified IP core can

be by-passed in some cases).

In the current project, the data transferred from PL to PS via DMA have the meaning of binary vectors

instead of complex IQ samples; the data rate on the PL<>PS interface is significantly smaller than the

symbol rate on the SoC<>AD9361 interface as there is nothing else but PL responsible for the physical-

layer signal processing (frame detection, demodulation, channel estimation, channel decoding,

descrambling, etc.). As a consequence, it is more accurate to consider only one wide data line on the

PL<>PS interface. The data vectors to be transferred to PS via DMA are generated asynchronously once

a new frame has been acquired and decoded with no errors. For that reason it is necessary to wire a

“data valid” line along with the data line.

Another problem to be solved when using MiniITX-XC7Z100 part is that Vivado has been lacking its

definition for a few years. To overcome that issue, some tweaks in Vivado installation are necessary.

Making them results with appearance of MiniITX-XC7Z100 part on a board selection pane (see

Fig. 4.17) and xc7z100ffg900-2 SoC in project settings (Fig. 4.18)

4.2.2. Reference design customization

With the aim to overcome the disadvantages of the original reference design, the datapath is

significantly modified. Four 16-bit data lines have been replaced with one 32-bit data line.

Consequently, data streams are not interleaved anymore (interleaving required troublesome

synchronization between the streams), so the blocks responsible for stream interleaving and

deinterleaving are removed. The utility_buffer IP, originally placed between FIFO at the clock domains’

border and the DMA interface, has been removed. It was devoted to alleviate the problem of

asynchronous type of data feed through DMA interface, but it has appeared to cause highly undesired

random delays.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 25

Fig. 4.17 Device selection window in Vivado with the desired board included

Fig. 4.18 Desired SoC version shown in the project settings

The genuine reference design by Analog Devices features more IP cores useless from the perspective

of the current project. In particular, it refers to the IP cores playing the role of HDMI, SPDIF, and I2S

interfaces; their removal brings reasonable FPGA resources savings. Note that removing unnecessary

IP cores involves modification of both wrapper- and system top HDL files.

Some minor changes, shown in Fig. 4.19, have been made in the settings of axi_ad9361 IP core,

responsible for transferring IQ passband signal samples, received by AD9361, to FPGA.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 26

Fig. 4.19 Configuration window of axi_ad9361 IP core

In detail, 1R1T mode is chosen to eliminate redundant support for two receive channels (according to

the project assumptions, only one receive channel is utilized). Additionally, TDD disable option is

checked, since the AD9361 is forced to operate permanently in Rx mode by an SPI write to AD9361

registers instead of periodic Tx/Rx toggling, controlled via FPGA pins. Thanks to that, neither 24-bit

TDD counter nor a few reference registers of the same size are implemented in FPGA. The rest of

configuration fields of axi_ad9361 IP core take the default values. DDS feature is enabled for testing

purposes.

Another improvement has been made in the domain of custom-made IP core clocking. In the original

reference design, the user’s IP core is clocked by the AD9361 clock divided by 2 (or by 4 in the case of

2 transmit streams – not applicable to the current design). It limits the system capability of serial data

processing, since half of the clock cycles are not usable. Instead, the custom-made IP core is now

clocked with the original AD9361 clock (rx_clk), distributed throughout the FPGA device directly from

a respective BUFG element.

The decision to eliminate a separate clock domain for custom-made IP core results with a simpler clock

cross-domain management: there is only one clock-domain crossing in the data path, handled safely

by means of a FIFO in axi_ad9361_adc_dma IP core. To transfer commands and status messages data

between the time domains (clk_fpga_0 and rx_clk) through AXI4-Lite, a 3-stage synchronizer is placed

in the axi_cpu_interconnect IP core. Together with AXI protocol handshaking, it guarantees safe

transfers.

Taking into account asynchronous data transfer between the clock domains (for both data path and

the control/status AXI channel), it is desired to constrain intra-clock paths on FPGA as false paths,

thereby instructing the Vivado placer to ignore them; it helps overcome timing-related issues when

routing. Fig. 4.20 proves that the paths between clock domains: clk_fpga_0 and rx_clk are successfully

set as false paths in Vivado.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 27

Fig. 4.20 Clock interaction report for the implemented design in Vivado

Not only is the MATLAB HDL workflow responsible for generating appropriate interfaces of the custom-

made IP core and incorporating it into the reference design, but also for attaching extraordinary

constraint files to the project. The constraint files contain the settings related to the hardware pinout,

clock frequency, false paths, etc. The pinout for MiniITX-XC7Z100 is identical as for MiniITX-XC7Z045,

so the constraint files related to the pins’ voltage and their assignment imported from the original

reference design are kept untouched.

4.2.3. The use of Simulink HDL Workflow Advisor

To avoid compatibility issues with a quite outdated reference design for MiniITX-XC7Z045, the authors

have decided to target their own MiniITX-XC7Z100 reference design for Vivado 2016.4. It has been

integrated with the HDL Workflow of Matlab 2017b under the name of MiniITX – it should be chosen

as the Target platform in Step 1.1 of the HDL Workflow Advisor, as shown in Fig. 4.21. Note that the

accurate MiniITX device (xc7z100) is associated with it, automatically. As the result of researchers’

efforts, Step 1.2 (shown in Fig. 4.22) enables setting specific board peripherals to be used or not.

Thanks to that one can decide to activate: LEDs, buttons, or DIP switches to control or observe selected

lines. According to his/her choice, one of alternative reference designs is loaded.

Step 1.3, shown in Fig. 4.23, brings the possibility to connect the inputs and outputs of the developed

Simulink block diagram to appropriate reference design wires (aka target platform interfaces). Note

the possibility to choose LEDs in the middle column. The use of board peripherals, like LEDs, buttons,

DIP switches must match the choices made in Step 1.2. If not, an error message will appear. The

meaning of specific target platform interfaces is explained in Table 4.6. It does not include the Simulink

ports attached to the AXI4-Lite interface, used to send control commands from PS to PL and read

diagnostic messages in the opposite direction.

After passing checks in Steps 2.1-2.4, the HDL code for the custom-made IP core is generated in

Step 3.2 of HDL Workflow Advisor. The generated IP core is deposited in a folder specified by the user

and can be manually placed into any Vivado block diagram. However, the customized reference design

MiniITX features the possibility to automatically integrate the IP core with the block diagram. It can be

done in Step 4.1 of HDL Workflow Advisor. If the process ends successfully, a link to a new-created

Vivado project appears in a log window of HDL Workflow Advisor, as shown in Fig. 4.24). Clicking the

link launches Vivado and the project opens. It is not suggested to run remaining steps of HDL Workflow

Advisor, as they are accurate only for the case when FPGA processing is controlled by Simulink (a kind

of hardware-software co-simulation).

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 28

Fig. 4.21 Step 1.1 of HDL Workflow Advisor

Fig. 4.22 Step 1.2 of HDL Workflow Advisor

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 29

Fig. 4.23 Step 1.3 of HDL Workflow Advisor (assignment of target platform interfaces to ports is

random)

Table 4.6 Target platform interfaces in HDL Workflow Advisor

Name Type Mating pin on Simulink
diagram

Description

RxSampleI0In
RxSampleQ0In

Input
RxAnt_I
RxAnt_Q

16-bit inputs for IQ samples of
the passband signal, represented
in 2’s complement format;
actually, 4 leading bits are
redundant

RxSampleValidIn Input Valid In

This line is periodically strobed
by axi_ad9361 IP core to
indicate useful samples; for 1R1T
mode, a pulse appears every 2nd
AD9361 clock cycle

RxDataOut Output DUTDataOut
32-bit vector conveying received
decoded data to PS via DMA

RxDataValid Output DutValidOut
Strobe for RxDataOut – it forces
FIFO at the clock domain border
to accept another data load

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 30

Fig. 4.24 Result of successful execution of the last step of HDL Workflow Advisor

4.2.4. Vivado project details

The complete block design of Vivado project is shown in Fig. 4.25, while a closeup on the custom-made

IP core is presented in Fig. 4.26. The target platform interfaces from Matlab HDL Workflow Advisor are

mapped to legacy IP core interfaces in Vivado block diagram according to Table 4.7.

Table 4.7 Target platform interfaces mapping

Name in HDL
workflow advisor

IP core interface name in Vivado
block design

RxSampleI0In
RxSampleQ0In

sys_wfifo_0_dma_wdata
sys_wfifo_1_dma_data

RxSampleValidIn sys_wfifo_valid_in

RxDataOut dut_data_0

RxDataValid dut_data_valid

There are some additional lines: AXI4-Lite bus (to receive control commands from PS and send status

messages), as well as reset and clock lines (separate for AXI bus sub-module and the rest of the IP

core). Since the clock-domain crossing is located in axi_cpu_interconnent, the whole custom-made IP

core clocking belongs to a single clock domain of rx_clk, originated from l_clk pin of axi_ad9361 block.

The IP core reset line is conjugated with PS reset by util_ad9361_divclk_reset block, responsible for

transferring the PS-generated reset to rx_clk clock domain. Note that the IP core must be additionally

resetted by an AXI write after AD9361 has finished all callibrations. Failure to do so might lead to

unpredictable IP core operation and metastability.

The design is synthesized with the clock constraints specified according to the most demanding 20 MHz

bandwidth transmission mode. The mode choice is managed by appropriate frequency setting of rx_clk

on AD9361 and impacts the speed of data passing through the whole data path in the rx_clk domain.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 31

Fig. 4.25 Vivado block design

Fig. 4.26 Custom-made IP core

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 32

5. Receiver implementation – PS part (software) for “hardware

oriented” version

5.1. TX vs RX – disambiguation

Processing System part is run on two boards, mainly:

 Trenz board (board version: TE0715-04-30-1I3),

 MITX (aka MiniITX board with Z100 FPGA, board version: Mini-ITX-7Z-ASY-G).

The most recent HDL version Analog Devices’ HDL that supports AVNET’s MiniITX box is hdl_2017_r1,

while HDL version that is compatible with Trenz board is hdl_2018_r2. A chain of dependencies

caused by such a seemingly unimportant version difference results in two different Linux O/S

versions that run on those boards. It is of an uttermost importance to note that such a choice of O/S

version was dictated by technical arguments, not by dogmatic or opinionated ones. Details are

shown in the table below.

Side Board HDL O/S Vivado Matlab

TX Trenz TE0715-04-30-1I3 hdl_2018_r2 2018_R2 2018.2 2019a

RX Mini-ITX-7Z-ASY-G hdl_2017_r1 2017_R1 2016.4 2017b

5.2. Operating System

Transmitter module is based on Trenz board TE0715-04-30-1I3, a consequence of which is using

Analog Devices’ Linux version 2018_R2 (kernel 4.14.0). [Note, however, that due to the

unavailability of the final board at the time of preparation of this document, the chosen version of

O/S was tested only on Trenz’s motherboard TE0705-04. As a result, this O/S version is not yet

decided to be final.]

5.2.1. Cross-compiling Tools

Linux kernel together with all supporting libraries and tools were built with GCC 11.2.0. [As of the

preparation time of this document, the final version of GCC is practically frozen, although it still might

be changed to a different one if necessary.]

5.2.2. Shell

O/S is interfaced via ash (Almquist shell).

5.2.3. Kernel Configuration

Kernel was configured using a customized Xilinx configuration provided by Analog Devices Inc. in the

source tree of Linux kernel under the name [xilinx_zynq_defconfig]. The customization

involved additional configuration of:

 DMA Engines (with Xilinx DMA Engines),

 AXI DMAC,

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 33

 AD9361,

 AD9517, and

 AXI DDS (Digital Direct Synthesizer).

5.2.4. FPGA Driver and Kernel Modules

FPGA Driver is loaded as a kernel module during the system boot-up. Detailed documentation of the

driver attributes can be found in the auto generated documentation file [10]. Delivered as an

attachment to this document. [Note, however, that eventual further changes to the implementation

of the IP Core may require corresponding updates to the driver documentation].

5.2.4.1. Driver Attributes Description

As mentioned previously, the documentation describing driver attributes is automatically generated.

A similar approach is used to create the driver code (obviously, only the most redundant parts). This

is achieved by describing driver’s attributed in a YAML file, which in turn is used to generate driver’s

and Latex’s code for the driver itself and its documentation, respectively. Such an approach was used

in order to easily keep in sync changes made to the driver and its documentation. An example

entrance that describes the hardware_version attribute is shown in the listing below.

Snip...

- name: hardware_version

 generated_driver_code:

[offsets,driver_entrances,driver_attributes_short,help_messages]

 type: __u32

 rd_offset: 0x04■■

 wr_offset: null

 rd_buffer_size: 16

 wr_buffer_size: 10

 rd_function: scnprintf

 wr_function: kstrtou32

 mask_spec: null

 trx_side: [tx,rx]

 help_msg: |-

 None

 description: |-

 Version of bit-stream hardcoded in the hardware.

 It is not possible to write into this register!

 hardware_name: DEV_ID

 available_values_hardware: null

Snip...

5.2.4.2. Kernel Modules Loading

Despite most of the kernel modules being compiled directly into the kernel itself, the FPGA driver is

not. Such an approach allows eventual changes to the driver without the need of recompiling the

whole kernel. The script used to load / unload kernel modules (which is located in

[/etc/rc.d/init.d/modules_conf]) is presented below. Note that contrary to most

arguments that such scripts accept, this particular one also accept arguments: load, unload and

reload (which corresponds to standard: start, stop and restart, respectively). Such an

approach allows using semantic that is closer to module loading / unloading. The configuration file

that drives the modules loading is located in [/etc/modules.d/modules.conf] and it is

discussed in the next section.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 34

#!/bin/ash

modules auto loading/unloading

. /etc/rc.d/init.d/functions

modules_config_file="/etc/modules.d/modules.conf"

modules_load_unload() {

 local modprobe_param="${1}"

 local msg="loading"

 ["${modprobe_param}" == "-r"] && msg="unloading";

 echo -n "${0}: Checking whether ${modules_config_file} exists and is valid: "

 [-r ${modules_config_file}] && grep -qv "^($|#)" ${modules_config_file}

 local ERR=$?

 [0 == ${ERR}] && true || false

 check_status

 [0 == ${ERR}] || { echo "${0} Not ${msg} modules! Problems with

${modules_config_file} file!"; exit 0; }

 sleep 0.1

 while read module args; do

 # Skipping blank or commented-out lines"

 case "${module}" in

 ""|"#"*) continue;;

 esac

 modprobe ${modprobe_param} ${module} ${args}

 ERR=$?

 echo -n "${0}: ${msg} ${module} with params: `["" != "${args}"] && echo

${args} || echo -*NONE*-`: "

 [0 == ${ERR}] && true || false

 check_status

 sleep 0.1

 done < ${modules_config_file}

}

case "$1" in

 start|load)

 modules_load_unload ""

 ;;

 unload|stop)

 modules_load_unload "-r"

 ;;

 reload|restart)

 $0 stop

 sleep 1

 $0 start

 ;;

 *)

 echo "Usage: ${0} {start|stop|restart|load|unload|reload}"

 exit 1

 ;;

esac

exit 0

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 35

5.2.4.2.1. Modules configuration file

The aforementioned modules configuration file (which is located in

[/etc/modules.d/modules.conf]) allows loading arbitrary modules (not only the FPGA

driver). The example script is shown in the listing below. Besides specifying modules to load, it also

allows specifying module’s parameter, e.g., in the listing below module fpgatrx is loaded with

parameter DEBUG set to 1. Kernel object files that contain the modules’ code are located in

[/lib/modules/$(uname -r)/kernel/drivers/], where [$(uname –r)] is release of

the running kernel, in our case it is: 4.14.0-xilinx-ge77ffb40e9a0-dirty. [But as already

mentioned this release might still be subject to an eventual change.]

File: /etc/modules.d/modules.conf

In order to load module at the system boot-up, add:

module_name module_param_1 module_param_2

fpgatrx DEBUG=1

5.2.5. Libraries and Tools

O/S is delivered with tools and libraries described in the table below. [Please note that the final

versions of some of these artifacts may be changed if deemed necessary.]

Tools / Library Version TX Version RX Description

Binutils 2.27 Set of tools and libraries for building binary
executable(s), e.g., liker, assembler, etc. All
build for ARM Cortex A9 processor, but without
dubious optimisation flags.

Busybox 1.24.2 Swiss-army-knife toolbox with standard set of
tools for working in a Linux environment. (All
tools are delivered as via symbolic links to one
executable.)

IANA-ETC 2.30
patched

 Data / information package for network
protocols and services.

MPC 1.0.3 Arbitrary precision floating-point complex
arithmetic library. (GCC dependency.)

MPFR 3.1.4 Arbitrary precision floating-point library. (GCC
dependency.)

musl-libc 1.1.19 Standard C library for embedded systems.

zlib 1.2.11 Data compression library.

netplug 1.2.9.2 GNU/Linux daemon for network services.

Dropbear 2018.76 Lightweight implementation of SSH library.

LibXML2 2.9.8 XML parsing library, implemented in C. libiio
dependency.

Boost 1.67 Boost – an umbrella of C++ utility libraries. Most
of them are header-only libraries. Only three
are installed on the final system:

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 36

libboost_atomic, libboost_chrono,

libboost_system.

tree 1.7.0 1.7.0 Command line recursive directory viewer /
explorer.

libiio 0.14 Hardware abstraction layer library via IIO
module (Industrial Input / Output) for
GNU/Linux. Mainly used to

gtest 1.11.0 1.11.0 Unit test library.

gflags 2.2.1 Command line parsing library.

googlebenchmark 1.6.1 1.6.1 Benchmarking library

{fmt} 8.1.1 8.1.1 Text formatting library

iproute2 ss190197 Network support tools.

5.2.6. Device Tree and Node Configuration

In order to easily distinguish between various systems configurations we add to the device tree file

parameter describing specific configuration of the board. An excerpt from a device tree is shown

below.

/{

 wzldevicemode {

 mode = "trenz";

 };

};

On the running system, current [wzldevicemode] (WZL here stands for Wireless ZYNQ Lab) can be

read form [/sys/firmware/devicetree/base/wzldevicemode/mode] file. In the case

the node describing the current configuration changes, the file with the fixed name that contains the

actual location of the current configuration is located in [/etc/radio/wzl-dev-mode-file-

location]. Such an approach ensures a single reference point to the actual location of the the file

describing the device mode.

Definition of the FPGA implementation of the custom made IP Core is also provided in the device tree

(in the FPGA/amba_pl section). The entrance in the device tree for SimpleQPSK IP Core is shown

below.

/{

 amba_pl: amba_pl {

 #address-cells = <1>;

 #size-cells = <1>;

 compatible = "simple-bus";

 ranges ;

 SimpleQPSK_ip_0: SimpleQPSK_ip@43c00000 {

 compatible = "xlnx,SimpleQPSK-ip-1.1";

 reg = <0x43c00000 0x10000>;

 };

 // ...

 };

};

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 37

5.2.7. RF Configuration

RF configuration files reside in the [/etc/radio] directory on the primary/root partition. An

example listing of subset of its directories is shown below.

/etc/radio/filters

├── cubesat-filter-v0001.ftr

├── cubesat-filter-v0002-1R1T-mode.ftr

├── cubesat-filter-v0003-61dot44.ftr

├── cubesat-filter-v0004-30dot72.ftr

├── cubesat-filter-v0005-7dot68-pll-ad9364.ftr

├── cubesat-filter-v0006-15dot36-pll-ad9364.ftr

└── lte_5MHz.ftr

/etc/radio/current/

├── ad9361-config.gflags

├── config-dispatcher.gflags

├── session-plan.yaml

└── session-scheduler-config.gflags

As can be deduced from the listing above, definition of FIR filters is in [/etc/radio/filters]

directory. An example FIR filter definition file is show below. Its format is self-explanatory.

$ head -12 /etc/radio/filters/lte_5MHz.ftr

Generated with AD9361 Filter Design Wizard 16.1.3

MATLAB 9.2.0.538062 (R2017a), 25-May-2018 16:55:22

Inputs:

Data Sample Frequency = 7680000 Hz

TX 3 GAIN 0 INT 2

RX 3 GAIN -6 DEC 2

RTX 983040000 122880000 61440000 30720000 15360000 7680000

RRX 983040000 122880000 61440000 30720000 15360000 7680000

BWTX 4372840

BWRX 4694670

-5,-10

0,-21

...

File [lte_5MHz.ftr] is used only for demonstration without disclosing actual details of the FIR

filters used in the real system (mainly number and values of consecutive filter taps).

5.2.8. Application Configuration Files

Besides FIR filters configuration files [/etc/radio] directory also contains

/etc/radio/current/

├── ad9361-config.gflags

├── config-dispatcher.gflags

├── session-plan.yaml

└── session-scheduler-config.gflags

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 38

These files contain configurations of the custom applications and are described more thoroughly

further in the document. The [/etc/radio/current] directory is in fact a soft link to the actual

directory that contains configuration for a particular transmission side (TX or RX).

5.2.9. Pre-O/S Components and Boot Sequence / Order

Boot sequence on ARM-based hardware is divided into separate stages. Initially the FSBL (First Stage

Boot Loader) prepares hardware, initializes CPUs and starts SSBL (Second Stage Boot Loader), which

in our case is U-boot. Then SSBL/U-Boot decompresses the Linux kernel image and loads it together

with a device tree describing the hardware and peripherals into memory. Next, the control is passed

to the kernel, which boots itself, launches [/sbin/init] program that finalizes the Linux booting-

up and starts services and applications required for ensuring the whole system is in an operational

state.

5.2.9.1. FSBL

Beside standard initialization, Xilinx’s FSBL allows configuring additional hardware via FSBL hooks. For

example, patch provided by Trenz allows configuring SI5338 module.

In the next three sections we show logs from FSBL, U-Boot and loading Linux kernel. These logs can

be used as a reference for adjusting and / or fine-tuning different versions of the mentioned software

components. They should be treated more as a guidance that a gold-standard when preparing

custom solutions.

5.2.9.1.1. FSBL Boot Logs

FSBL loading logs are presented below. The manifest info section describes internals used to create a

final [BOOT.BIN] file, it is not a necessary part and it is used solely for simplifying identification of

the loaded bitstream.

MANIFEST INFO:

HDF FILE: sr-cubesat-trenz-tx-v0011.hdf

HDF GIT SHA: 8b041aee83724fadcd64867d266cabf8cdbfb005

IP CORE REPORT PATH:

d:/TrenzPrebuild/system/ip_lib/SimpleQPSK_ip_v1_1/doc/doc_arch_axi4_lite.jpg

ZYNQ XTOOLCHAIN GIT SHA: bad57fe9919f23f83c19aeeb71f0a3bb37e2e70a

FSBL build date: Tue, 14 Dec 2021 17:12:32 +0100

Xilinx Zynq First Stage Boot Loader (TE + PUT/TGM modified)

Release 2018.2 Dec 14 2021-17:12:50

5.2.9.2. SSBL / U-boot

U-boot logs are only for the reference.

U-Boot 2018.01 (Oct 11 2021 - 16:38:10 +0200) Xilinx Zynq ZC702

Board: Xilinx Zynq

Silicon: v3.1

I2C: ready

DRAM: ECC disabled 1 GiB

MMC: sdhci@e0100000: 0 (SD)

** No device specified **

Using default environment

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 39

In: serial@e0000000

Out: serial@e0000000

Err: serial@e0000000

Board: Xilinx Zynq

Silicon: v3.1

Net: ZYNQ GEM: e000b000, phyaddr ffffffff, interface rgmii-id

eth0: ethernet@e000b000

U-BOOT for petalinux

ethernet@e000b000 Waiting for PHY auto negotiation to complete......... TIMEOUT !

Hit any key to stop autoboot: 0

reading uEnv.txt

486 bytes read in 12 ms (39.1 KiB/s)

Loaded environment from uEnv.txt

Importing environment from SD ...

Running uenvcmd ...

Copying Linux from SD to RAM...

reading uImage

4076304 bytes read in 238 ms (16.3 MiB/s)

reading devicetree.dtb

10683 bytes read in 17 ms (613.3 KiB/s)

** No boot file defined **

5.2.9.3. Linux Kernel

Linux kernel logs are only the reference.

Booting kernel from Legacy Image at 03000000 ...

 Image Name: Linux-4.14.0-xilinx-ge77ffb40e9a

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 4076240 Bytes = 3.9 MiB

 Load Address: 00008000

 Entry Point: 00008000

 Verifying Checksum ... OK

Flattened Device Tree blob at 02a00000

 Booting using the fdt blob at 0x2a00000

 Loading Kernel Image ... OK

 Loading Device Tree to 07ffa000, end 07fff9ba ... OK

Starting kernel ...

Booting Linux on physical CPU 0x0

Linux version 4.14.0-xilinx-ge77ffb40e9a0-dirty (tgm@asus) (gcc version 8.3.0

(GCC)) #1 SMP PREEMPT Mon Oct 25 18:38:15 CEST 2021

CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d

CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache

OF: fdt: Machine model: xlnx,zynq-7000

Memory policy: Data cache writealloc

cma: Reserved 16 MiB at 0x3f000000

random: fast init done

percpu: Embedded 16 pages/cpu @ef7cf000 s35084 r8192 d22260 u65536

Built 1 zonelists, mobility grouping on. Total pages: 260608

Kernel command line: console=ttyPS0,115200 root=/dev/mmcblk0p2 rw earlyprintk

rootfstype=ext4 rootwait

PID hash table entries: 4096 (order: 2, 16384 bytes)

Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)

Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)

Memory: 1012868K/1048576K available (6144K kernel code, 266K rwdata, 1672K

rodata, 1024K init, 152K bss, 19324K reserved, 16384K cma-reserved, 24576)

Virtual kernel memory layout:

 vector : 0xffff0000 - 0xffff1000 (4 kB)

 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)

 vmalloc : 0xf0800000 - 0xff800000 (240 MB)

 lowmem : 0xc0000000 - 0xf0000000 (768 MB)

 pkmap : 0xbfe00000 - 0xc0000000 (2 MB)

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 40

 modules : 0xbf000000 - 0xbfe00000 (14 MB)

 .text : 0xc0008000 - 0xc0700000 (7136 kB)

 .init : 0xc0900000 - 0xc0a00000 (1024 kB)

 .data : 0xc0a00000 - 0xc0a42a80 (267 kB)

 .bss : 0xc0a42a80 - 0xc0a68e44 (153 kB)

Preemptible hierarchical RCU implementation.

 RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.

 Tasks RCU enabled.

RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2

NR_IRQS: 16, nr_irqs: 16, preallocated irqs: 16

efuse mapped to f0800000

slcr mapped to f0802000

L2C: platform modifies aux control register: 0x72360000 -> 0x72760000

L2C: DT/platform modifies aux control register: 0x72360000 -> 0x72760000

L2C-310 erratum 769419 enabled

L2C-310 enabling early BRESP for Cortex-A9

L2C-310 full line of zeros enabled for Cortex-A9

L2C-310 ID prefetch enabled, offset 1 lines

L2C-310 dynamic clock gating enabled, standby mode enabled

L2C-310 cache controller enabled, 8 ways, 512 kB

L2C-310: CACHE_ID 0x410000c8, AUX_CTRL 0x76760001

zynq_clock_init: clkc starts at f0802100

Zynq clock init

clocksource: ttc_clocksource: mask: 0xffff max_cycles: 0xffff, max_idle_ns:

537538477 ns

sched_clock: 16 bits at 54kHz, resolution 18432ns, wraps every 603975816ns

timer #0 at f080a000, irq=16

sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 4398046511103ns

clocksource: arm_global_timer: mask: 0xffffffffffffffff max_cycles: 0x4ce07af025,

max_idle_ns: 440795209040 ns

Switching to timer-based delay loop, resolution 3ns

Console: colour dummy device 80x30

Calibrating delay loop (skipped), value calculated using timer frequency.. 666.66

BogoMIPS (lpj=3333333)

pid_max: default: 32768 minimum: 301

Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)

Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)

CPU: Testing write buffer coherency: ok

CPU0: thread -1, cpu 0, socket 0, mpidr 80000000

Setting up static identity map for 0x100000 - 0x100060

Hierarchical SRCU implementation.

smp: Bringing up secondary CPUs ...

CPU1: thread -1, cpu 1, socket 0, mpidr 80000001

smp: Brought up 1 node, 2 CPUs

SMP: Total of 2 processors activated (1333.33 BogoMIPS).

CPU: All CPU(s) started in SVC mode.

devtmpfs: initialized

VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4

clocksource: jiffies: mask: 0xffffffff max_cycles: 0xffffffff, max_idle_ns:

19112604462750000 ns

futex hash table entries: 512 (order: 3, 32768 bytes)

pinctrl core: initialized pinctrl subsystem

NET: Registered protocol family 16

DMA: preallocated 256 KiB pool for atomic coherent allocations

cpuidle: using governor menu

hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.

hw-breakpoint: maximum watchpoint size is 4 bytes.

zynq-ocm f800c000.ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0880000

zynq-pinctrl 700.pinctrl: zynq pinctrl initialized

e0000000.serial: ttyPS0 at MMIO 0xe0000000 (irq = 36, base_baud = 6249999) is a

xuartps

console [ttyPS0] enabled

vgaarb: loaded

SCSI subsystem initialized

usbcore: registered new interface driver usbfs

usbcore: registered new interface driver hub

usbcore: registered new device driver usb

media: Linux media interface: v0.10

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 41

Linux video capture interface: v2.00

pps_core: LinuxPPS API ver. 1 registered

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti

<giometti@linux.it>

PTP clock support registered

EDAC MC: Ver: 3.0.0

FPGA manager framework

fpga-region fpga-full: FPGA Region probed

Advanced Linux Sound Architecture Driver Initialized.

clocksource: Switched to clocksource arm_global_timer

NET: Registered protocol family 2

TCP established hash table entries: 8192 (order: 3, 32768 bytes)

TCP bind hash table entries: 8192 (order: 4, 65536 bytes)

TCP: Hash tables configured (established 8192 bind 8192)

UDP hash table entries: 512 (order: 2, 16384 bytes)

UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)

NET: Registered protocol family 1

RPC: Registered named UNIX socket transport module.

RPC: Registered udp transport module.

RPC: Registered tcp transport module.

RPC: Registered tcp NFSv4.1 backchannel transport module.

hw perfevents: no interrupt-affinity property for /pmu@f8891000, guessing.

hw perfevents: enabled with armv7_cortex_a9 PMU driver, 7 counters available

workingset: timestamp_bits=30 max_order=18 bucket_order=0

jffs2: version 2.2. (NAND) (SUMMARY) �© 2001-2006 Red Hat, Inc.
bounce: pool size: 64 pages

io scheduler noop registered

io scheduler deadline registered

io scheduler cfq registered (default)

io scheduler mq-deadline registered

io scheduler kyber registered

dma-pl330 f8003000.dmac: Loaded driver for PL330 DMAC-241330

dma-pl330 f8003000.dmac: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4

Num_Events-16

[Trenz board version: TE0715-04-30-1I3.]

[Final O/S version is not yet decide due to the lack of final PUT/Trenz boards.]

5.3. Custom Made Applications

5.3.1. Application: ad9361-config.run [TX + RX]

[ad9361-config.run] application is used to configure AD9361 and the internal IP Core. The

program is launched automatically at the system startup. To an extent it might be re-launched during

the normal operational state of the system, although such an on-the-fly-re-configuration is strongly

discouraged, as it may result in a non-optimal system state (e.g. not every AD9361 and IP Core

internals could be properly configured).

The configuration of [ad9361-config.run] application is kept in [/etc/radio/current/

ad9361-config.gflags] file. Note, however, that on the TX side, the location of the

configuration file might be changed due to the availability of the pre-boot/post-boot configuration

update mechanism. This mechanism is realized by an appropriate software and it is transparent from

the point of view of [ad9361-config.run] application.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 42

The example of the configuration file mentioned in this section is shown below.

Default configuration of AD9361

Note that config lines cannot have comments!

Cubesat specific configuration [BEGIN]

Without this option nothing in this section

is taken into account during configuration

--conf_cubesat

Quadrature tracking

--quad_track=ON

ENSM mode

Only TX and RX are support.

Anything else will lead to problems

Values: TX, RX

--ensm_mode=TX

Cubesat specific configuration [END]

FPGA TRX config [BEGIN]

Turn ON/OFF FPGA TRX (TDD)

--fpgatrx_enable=ON

Select code rate

Values: 0, 1, 2, 3, 4, 5, 6

--code_rate=0

TX Data source

Values: 0, 1, 2

--fpgatrx_tx_data_src=0

Length of frequency offset estimation preamble

Values: 0, 1, 2

--fpgatrx_frequency_offset_estimation_preamble_length=2

Waiting time (in ms) before configuring / enabling FPGA TRX module

--fpgatrx_enable_wait_time_ms=950

Wait time (in ms) after resetting the outer FPGA TRX IP CORE

We wait only if --fpgatrx_outer_ipcore_reset is present, i.e.,

it is not uncommented.

--fpgatrx_wait_after_outer_ipcore_reset_ms=45

Whether we do or do not reset the outer FPGA TRX IP CORE.

Comment if you want to disable resetting.

--fpgatrx_outer_ipcore_reset

FPGA TRX config [END]

Direction

--direction=TRX

FIR filter configuration

--fir_filter_file=/etc/radio/filters/cubesat-filter-v0004-30dot72.ftr

--fir_filter=ON

Extra register content

Format used is: reg1 << val1; reg2 << val2

NO QUOTES AROUND REGISTERS!

--extra_registers_content=0x035 << 0x0B

Carrier frequency in GHz

TX/RX filters on the small PUT radio boards have range 2120 -- 2170 [MHz]

--c_frq=2.145

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 43

Bandwidth in MHz

#--bandwidth=15

--bandwidth=28

Sampling rate in MSPS (mega samples per second)

#--sampling_rate=7.68

--sampling_rate=40.816326

TX power gain in dB

--tx_power_gain=-25

Logging capability

--log

Disable ADI digital interface FIR tune

(tuning must be disabled on picozed/ADRV1CRR-FMC)

--disable_digital_interface_tune_fir

To simulate the bahaviour without setting any AD9361 config

Uncomment the following line:

--dry-run

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 44

6. Receiver implementation – “software oriented” version

6.1. GnuRadio platform

As explained in chapter 1.2.2, the baseband processing part of the receiver is implemented using

GNURadio SDR software platform. It is a free and open-source software development toolkit that

provides signal processing blocks to implement software radios. It can be used with readily-

available low-cost external RF hardware to create software-defined radios, or without hardware

in a simulation-like environment. It is widely used in research, industry, academia, government,

and hobbyist environments to support both wireless communications research and real-world

radio systems.

Figure 6.1 shows an example flowgraph within the GNURadio Companion visual editor:

Fig. 6.1 Example flowgraph within the GNURadio Companion visual editor

GNURadio is a framework that enables users to design, simulate, and deploy highly capable real-

world radio systems. It is a highly modular, "flowgraph"-oriented framework that comes with a

comprehensive library of processing blocks that can be readily combined to make complex signal

processing applications. GNURadio has been used for a huge array of real-world radio applications,

including audio processing, mobile communications, tracking satellites, radar systems, GSM

networks, Digital Radio Mondiale, and much more - all in computer software. It is, by itself, not a

solution to talk to any specific hardware. Nor does it provide out-of-the-box applications for

specific radio communications standards (e.g., 802.11, ZigBee, LTE, etc.,), but it can be (and has

been) used to develop implementations of basically any band-limited communication standard.

If specific processing blocks are not available in the libraries or out-of-tree modules, they can be

easily implemented by the interested user, which is an important feature of GNURadio.

To optimize performance of the software version Volk extension may be used (Vector-Optimized

Library of Kernels). It speeds up the execution of signal processing blocks in GNURadio. It is a

collection of low-level C++ routines that are optimized for vectorized execution on modern CPUs.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 45

6.2. Receiver architecture

The “software oriented” version of the receiver includes two main components: the hardware RF

front-end and the software running on a PC.

The developed receiver uses the USRP B210 from Ettus Research as the RF front-end responsible

for receiving and digitizing the signals from the antenna system. It is connected via USB 3.0

interface to the PC. The base-band signal samples are processed using the GNURadio platform and

the DSP blocks developed specifically for the CBSR system, as described in the following sections.

The “software oriented” receiver processes the signals “off-line”, i.e. the base-band signal samples

are first saved in the files and next processed in a non-real-time manner on the PC. The decoded

data stream is available with some delay (again, stored in the files), depending on the PC

performance.

The USRP B210 may be replaced with another SDR hardware, however the following requirements

must be met:

1. sampling rate – min. 30.72 Msps

2. frequency range – min. 6 GHz

3. GNURadio compatibility

6.3. Custom-made processing blocks

6.3.1. Receiver front-end

The receiver front-end is designed to be simple to avoid any processing on live data, which might

introduce delays or errors. The front-end consists of six blocks: options block, UHD USRP source

block, file sink block, and parameter blocks for center frequency, channel gain value, and sampling

rate (see Fig. 6.2).

The parameter blocks are used to set the correct values for the variables used. Sampling rate can

be one of the following values (MHz): 1.536, 1.92, 7.68, 15.36, 30.72. It is important to ensure that

the sample rate is set correctly to avoid any issues with the collected data. Using an incorrect

sample rate can result in aliasing or loss of information. Channel gain can be adjusted depending

on the conditions. There should be no reason to modify center frequency, but it is implemented

for completeness.

The UHD USRP source block is used to connect to the physical device and collect the data. It is

important to ensure that the device is configured correctly, and that the connection is stable to

avoid any data loss. The center frequency for the receiver is set to 5.84GHz, and the default gain

value is set to 60dB. These values can be adjusted if needed.

The file sink block is used to store the collected samples. The program runs without a GUI to avoid

any overflows while collecting data. The collected samples can be used for further processing or

analysis offline, by reading the file and operating upon it.

To use the receiver, set the sample rate variable to one of the available options and run the

program. The UHD USRP source block will connect to the physical device, and the file sink block

will store the collected samples. It is important to ensure that the sample rate is appropriate for

the intended use case. Using a higher sample rate will result in larger files and longer processing

times.

All processing and analysis are performed offline, using the collected samples, to avoid any

interference with collecting of the data.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 46

Fig. 6.2 Receiver front-end

To run the schematic we can either open GNURadio, modify values and run. It is also possible to

automate the whole workflow by using a script that calls for the Python file with parameter

values to be used.

6.3.2. Matched Filtering

In GNURadio, we can implement matched filtering using a series of signal processing blocks to filter

the input signal and detect the presence of the known signal. Since all processing is done offline,

the data is fetched from a file using File Source Block. The Throttle Block is used to control the rate

at which the input signal is processed by the subsequent blocks, ensuring that the processing is

done at a consistent and manageable rate. To filter the input signal and amplify the desired signal

while removing unwanted noise, we use a series of Decimating FIR Filters. In this case, we use two

filters with different numbers of taps: the first filter has a decimation of 1 and 17 taps, while the

second filter has a decimation of 1 and 214 taps. After filtering, the Complex to Mag Phase Block

is used to convert the complex signal to its magnitude and phase components. The resulting

magnitude is then summed up with itself delayed by 256 samples for correlation. The

frame_sync_ff block is responsible for matched filtering process. By using correlation magnitude

and a set threshold we are able to get signal itself, frequency preamble and SOF (see Fig. 6.3).

Fig. 6.3 Matched filtering

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 47

6.3.3. Time synchronization

The time synchronization part is responsible for detection and marking of the start of data part in

a radio frame, as well as for initial correction of the timing mismatch. The overall procedure follows

the same procedure as for the hardware receiver, as described in Section Błąd! Nie można

odnaleźć źródła odwołania.. Fig. 6.4 presents the time synchronization part of the software

receiver. The input samples, coming from the matched filtering RRC block, are first filtered with a

FIR filter with coefficients matching the Zadoff-Chu sequence used in the T_AMB part of the

preamble, with the output of the filter fed into a magnitude and phase calculation block. The

magnitude is used to construct a correlation metric used for frame detection, whereas the phase

is used for initial coarse phase offset estimation. Furthermore, the magnitude squared of the

correlation metric is used to perform timing offset estimation according to the Center of Gravity

(CoG) method described in [5].

Fig. 6.4 Signal detection and time synchronization

The core of the time synchronization subsystem is the frame_sync_ff function implementing a FSM

responsible for marking of the start of the data part in a radio frame using a dedicated SOF tag and

performing initial timing offset correction using a Farrow interpolating filter. Furthermore, the

FDM also extracts and correlates the F_AMB preamble with a reference sequence to provide the

input signal to the coarse frequency offset estimation part. The inputs, outputs and parameters of

this block are described in Table 6.1, while the example of tagged output signal (Signal Out)is

shown in Fig. 6.5.

Table 6.1 Selected Inputs and outputs of frame_sync_ff

Name Type Description

Correlation Magnitude Input
Received signal correlation metric used for signal
detection and time synchronization

Correlation Magnitude Sq Input
Received signal correlation metric used (after being
squared) for initial timing offset estimation using the CoG
method

Correlation Phase
Input

Received signal phase metric used for initial phase offset
estimation

Signal In
Input

Input complex signal, to be tagged with the found start of
radio frame

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 48

Frequency preamble
length

Parameter
The length of F_AMB preamble used for frequency offset
estimation (including the extension samples)

Correlation threshold Parameter
Minimum correlation magnitude value to consider a start
of a radio frame to be found.

Total data frame length Parameter
Expected minimum number of samples of the data part of
the radio frame to determine the point in which a search
for a new frame will start.

Signal Out Output
Samples of the radio frame, including the indication of the
start of data part of the radio frame in form of SOF tag.

Frequency Preamble Output
Samples of correlation of F_AMB preamble with
reference sequence used for coarse frequency
synchronization

SOF Output
Signal indicating the detected start of data part of the
radio frame – nonzero value for a sample where the start
is identified.

Fig. 6.5 Example of tagged output of frame_sync_ff block

(SOF indicates start of data part of a radio frame)

6.3.4. Coarse Frequency offset estimation

The result of correlation of F_AMB preamble with the reference sequence is fed to the coarse

frequency offset estimation part to find the initial CFO caused by Doppler effect and clock mismatch

between the transmitter and the receiver, that still remains after the initial correction performed

based on the satellite trajectory estimation. The structure of the coarse frequency offset estimation

part is shown in Fig. 6.6 and comprises blocks performing calculation of the FFT magnitude and a

CFO_estimator_ff custom block responsible for finding the maximum bin of Magnitude FFT and

calculation of the CFO with the use of Fractional Fourier Coefficients, as described in [4]. The output of

the CFO_estimator_ff block is then fed to the custom midamble extraction and processing block to

perform CFO correction.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 49

Fig. 6.6 Frequency offset estimation part of the “software receiver”

The inputs, outputs and parameters of the CFO_estimator_ff block are described in Table 6.2.

Table 6.2 Selected Inputs and outputs of CFO_estimator_ff

Name Type Description

F_AMB in Input
Signal resulting from correlation of F_AMB with reference
sequence (input to the coarse frequency synchronization
part)

FFT Mag in Input
Magnitude FFT of the correlation of F_AMB with reference
sequence

Frequency preamble
length

Parameter
The length of F_AMB preamble used for frequency offset
estimation (excluding extension samples – FFT size)

Sampling Frequency Parameter Sampling frequency of the received signal

Number of FFC
calculcation iterations

Parameter
Number of iterations used in calculation of CFO using the
FFC method

CFO Output Found CFO estimate (relative to the sampling frequency)

6.3.5. Midamble processing and frame disassembly part

The main part of the synchronization functions is performed in the midamble processing and frame

disassembly part, show in Fig. 6.6. It comprises three custom functional blocks:

midamble_processing_ff, convertToQPSK_ff and subframes_to_files_ff. The role of

midamble_processing_ff is to perform coding rate (CRI) detection, frame disassembly with extraction

of midambles and fine timing, phase and frequency offset estimation and correction. This block

processes the input signal tagged with SOF block, (coming from the frame_sync_ff output) using also

the CFO estimated in the coarse frequency estimation part. The inputs, outputs and parameters of the

midamble_processing_ff block are described in Table 6.3, whereas the detailed functionality of this

block is given in the following subsections.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 50

Fig. 6.6 Midamble processing and frame disassembly part of the “software receiver”

Table 6.3 Selected Inputs and outputs of midamble_processing_ff

Name Type Description

Signal in Input
Samples of the radio frame, including the indication of the
start of data part of the radio frame in form of SOF tag
(output of frame_sync_ff block)

CFO in Input
Initial (coarse) estimate of CFO from CFO_estimator_ff
block

Length of F_AMB + tail of
T_AMB

Parameter
The expected number of samples used as a tail of T_AMB
and F_AMB sequence, to be accounted for in CFO
correction process.

Number of midambles for
CRI search

Parameter
Number of midambles (P_AMBs) used for averaging in CRI
search procedure

Minimum frame length Parameter Minimum expected number of samples of a radio frame

Length of P_AMB Parameter Number of samples of the P_AMB midamble sequence.

Length of data blocks
between midambles

Parameter
Size of the data block between two subsequent
midambles (P_AMBs)

Number of subframes in
radio frame

Parameter
Expected number of subframes (codewords) contained in
a single radio frame

Data Out Output
Output signal (data only) with tags indicating the start of
each subframe (codeword) and the identified CRI

CRI Output Output indicating the estimated CRI values

The output of midamble_processing_ff block is a complex signal comprising only the data samples of

the received radio frame, with tags indicating start of each separate subframe (codeword) and the

identified code rate (CRI). While these signal consists of OQPSK symbols, it is fed to the

convertToQPSK_ff block, where it is downsampled twice, with the symbols converted from OQPSK

form to standard QPSK constellation. Finally, the output tagged QPSK signal, with example presented

in Fig. 6.7 and the constellation shown in Fig. 6.8, respectively, is fed to the subframes_to_files_ff block,

where each subframe (codeword) complex samples are stored in individual data files used as an

interface to the demodulation and decoding part of the receiver. This last block makes use of a single

parameter which is a specification of the common prefix used for files to store the data subframes

(files are saved with format prefix + subframe_number).

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 51

Fig. 6.7 Example of the tagged QPSK data sequence being input to the

subframes_to_files_ff block.

Fig. 6.8 Example of the received QPSK data constellation.

6.3.5.1. Coding rate evaluation

There are 8 possible sequences to be used as P_AMB midamble, with 7 representing the differend

coding rate used, and the additional one used to indicated end of transmission (EoT). All these

sequences result from a cyclic shift of the same base Zadoff-Chu sequence, with different shift

values applied. Therefore, in the midamble_processing_ff block the received midambles are

correlated with all 8 possible versions of the reference midamble, and the version (shift) resulting

in the highest correlation metric is assumed to be the used one – representing the applied coding

rate. In order to mitigate the impact of noise on this estimation, the results of correlation of N

consecutive midambles are averaged, where N is the value specified using Number of midambles

for CRI search parameter of the midamble_processing_ff block. The identified index of coding rate

(CRI) is then signaled using the dedicated output of this block, as well as added to the output

symbols sequence in form of tags (CRI tag in Fig. 6.7).

6.3.5.2. Radio frame disassembly

Radio frame disassembly is performed by the midamble_processing_ff block based on the

detection of the SOF tag, inserted to the input sequence in frame_sync_ff block and indicating the

start of the first midamble (P_AMB) in the radio frame. The sample corresponding to the SOF tag

is considered to be the first midamble sample. Then a counter is started that counts the

consecutive samples and categorizes them to one of the following sets:

 Midamble (P_AMB) samples – these are the samples where the value of counter is less

than the parameter Length of P_AMB.

 Data samples – those where the counter value is greater than or equal Length of P_AMB.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 52

The counter is reset to 0 every (Length of P_AMB + Length of data blocks between midambles)

samples. This procedure continues for the duration of the whole radio frame, that depends on the

expected length of a data subframe (determined based on CRI value – found as described in

6.3.5.1) and number of data subframes (codewords) contained in a radio frame (Number of

subframes in radio frame parameter).

Only the data samples are later output from the frame_sync_ff block, with the start of consecutive

subframes (codewords) marked using subframe tag.

6.3.5.3. Fine timing, phase and frequency offset estimation

The final correction of the received data is performed in the midamble_processing_ff block. It

consists of:

 Fine timing error tracking – performed using the CoG method [5], with the results of

midamble correlation used to find the remaining timing error. The aim of this procedure

is to correct the eventual shift in timing resulting from mismatch of the oscillators at the

transmitter and the receiver. The timing error is then corrected using Farrow interpolating

filter.

 Fine phase and frequency offset estimation – found as the gradient of the change of phase

offset of subsequent midambles (P_AMBs). For the purpose of its estimation the results of

correlation of subsequent midambles are used, with the residual remaining CFO estimated

based on averaging of results obtained for consecutive midambles pairs. This estimated

phase and frequency offset is then used along with the coarse CFO estimate from

CFO_estimator_ff block to correct the phase of the data symbols forming the output of

the midamble_processing_ff block. The exact procedure is described in [4].

6.3.6. Demodulation

After successful phase and frequency offset estimation, the data are passed to the demodulation

block. The role of this block is to calculate the LLR (log-likelihood ratio) values that subsequently

fed the decoding block. The demodulation is performed according to the formula:

𝑙𝑜𝑔 (
𝑃(𝑏 = 0|𝑟)

𝑃(𝑏 = 1|𝑟)
) =

𝑑1
2 − 𝑑0

2

𝑁0

where 𝑑𝑖 = |𝑟𝑘 − 𝑠𝑖|, rk represents the received signal and si represents the constellation points.

6.3.7. Decoding

The decoding process consists of three separate stages. The first stage is a Rate De-Matching, the

second stage is iterative decoding and the third step is CRC verification. Each of the stages is

realized with a separate block.

The decoding process starts with rate de-matching. Its role is to match the number of transmitted

bits to the size of the unpunctured codeword. It is caused by the fact that in the system a set of

different CRI can be used, and each CRI carries a different number of coded bits.

The information generated by the Rate De-Matching is fed to the iterative decoder. Within the

system, the LTE-compliant turbo code is used with the maximal number of 8 iterations. For a single

SISO decoder, a Max-Log-MAP decoding algorithm was assumed.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 53

After the decoding process frame is subjected to CRC verification. Its role is to decide whether the

decoding process was successful. Moreover, CRC verification is performed after each iteration.

6.3.8. Data packing

Data packing is the last block in the software receiver chain. Its role is to prepare a file (or set of

files) that contains all the information transmitted via the transmission link. However, decoded

data is not the only information stored in the files, the additional information is the following:

 CRI index – contains information on what CRI was used to transmit the data,

 The number of iterations – this information indicates how many decoding iterations were

used in the decoding process to decode the obtained codeword. It needs to be mentioned

that in the case of a correctly decoded codeword, the number of iterations used can be

lower or equal to the maximal number of iterations allowed (8 is assumed as the maximal

number of iterations). In the case of erroneous decoding, this field must contain the

maximal number of decoding iterations.

 Information if codeword was decoded correctly – this field informs if the data stored in

the file are valid (information obtained via CRC check); if not data retransmission will be

requested by higher protocol layers.

Rafał Krenz, ed. Receiver Module CS.S7.Gen

Version 1.0 21.02.2023 54

Bibliography

[1] CS.S1.Gen System specification

[2] Zynq-7000 All Programmable SoC Overview (DS190)

[3] CS.S2.Gen Transmitter module

[4] CS.S5.Gen Transmission and reception

[5] A. Gesell, J. B. Huber, B. Lankl, G. Sebald, “Data-Aided Symbol Timing Estimation for Linear

Modulation”, AEU - International Journal of Electronics and Communications, Volume 56,

Issue 5, 2002, Pages 303-311, ISSN 1434-8411

